19,980 research outputs found

    Association between MAPT polymorphism but not APOE promoter and elite rugby athlete status

    Get PDF
    INTRODUCTION: Incidence and outcomes of concussions have been hypothesised to be genetically influenced. The APOE Promoter G219T (rs405509) polymorphism has been associated with differential promoter activity and unfavourable outcomes after traumatic brain injury. The TT genotype is associated with a 3-fold greater risk of multiple concussions. The TT genotype of MAPT (rs10445337) has also been associated with poorer outcomes after concussion. Rugby has one of the highest incidences of concussion in sport, so it was hypothesised that APOE Promoter TT and MAPT TT genotypes would be less prevalent in elite rugby athletes because those genotypes, previously associated with increased risk, would be less compatible with achieving elite athlete status. METHODS: Participants were from the RugbyGene project, comprising elite Caucasian male rugby athletes (n = 528; mean (standard deviation) height 1.85 (0.07) m, mass 101 (14) kg, age 29 (7) yr), including 420 rugby union (RU) athletes that for some analyses were divided into forwards and backs and 108 rugby league (RL) athletes. Non-athletes were 592 Caucasian men and women (57% male, height 1.72 (0.10) m, mass 74 (14) kg, age 31 (7) yr). PCR of genomic DNA was used to determine genotypes using TaqMan probes, then groups were compared using χ2 and odds ratio (OR) statistics. RESULTS: All genotype data were in Hardy-Weinberg equilibrium. For MAPT (rs10445337), the risk genotype (TT) was underrepresented in rugby athletes (60%) compared to non-athletes (66%), CT more common in rugby athletes (34%) than non-athletes (29%) and little difference in CC genotype frequencies (χ2 = 7.092, P = 0.029; TT genotype frequency OR = 0.80, 95% confidence intervals (CI) = 0.62-1.02). There were no differences in MAPT (rs10445337) genotype frequencies between RU forwards and backs. For APOE Promoter G219T (rs405509), there were no differences in genotype frequencies between all athletes (RU and RL) and non-athletes (27% TT genotype in players and non-athletes), nor between RU forwards and backs. CONCLUSION: The MAPT (rs10445337) TT genotype is 6% less common in elite rugby athletes than non-athletes. Therefore, carrying at least one rs10445337 C allele appears to increase the probability of sustained career success in the high-risk concussion environment of elite rugby, perhaps via a greater ability to recover from concussions.Peer reviewe

    The quenching of compressible edge states around antidots

    Full text link
    We provide a systematic quantitative description of the edge state structure around a quantum antidot in the integer quantum Hall regime. The calculations for spinless electrons within the Hartree approximation reveal that the widely used Chklovskii et al. electrostatic description greatly overestimates the widths of the compressible strips; the difference between these approaches diminishes as the size of the antidot increases. By including spin effects within density functional theory in the local spin-density approximation, we demonstrate that the exchange interaction can suppress the formation of compressible strips and lead to a spatial separation between the spin-up and spin-down states. As the magnetic field increases, the outermost compressible strip, related to spin-down states starts to form. However, in striking contrast to quantum wires, the innermost compressible strip (due to spin-up states) never develops for antidots.Comment: submitted to Phys. Rev. Let

    Association of MMP3 but not TIMP2 gene variants with elite rugby player status and rugby code

    Get PDF
    Introduction: Achilles tendon pathology and anterior cruciate ligament rupture are multifactorial conditions for which genetic risk factors have been identified. Single nucleotide polymorphisms (SNPs) within the MMP3 (rs591058, rs679620, rs650108) and TIMP2 (rs4789932) genes have previously been associated with tendon and ligament pathologies. Although not entirely clear, prior literature indicates the risk alleles for Achilles tendon pathology as T (rs591058), G (rs679620) and A (rs650108) for MMP3. However, prior evidence regarding TIMP2 is equivocal. MMP3 is considered an essential regulator of matrix degradation and remodelling within diseased and normal musculoskeletal soft tissues. TIMP2 maintains homeostasis in the extracellular matrix in part by inhibiting MMP function. Given the high incidence and severity of tendon and ligament injuries in elite rugby athletes, we hypothesised that the aforementioned SNPs would be associated with career success. Methods: Participants from the RugbyGene project were elite Caucasian male rugby athletes (n = 566; mean (standard deviation) height 1.85 (0.07) m, mass 101 (14) kg, age 29 (7) yr), including 420 rugby union (RU) athletes that for some analyses were divided into forwards and backs and 120 rugby league (RL) athletes. Non-athletes were 589 Caucasian men and women (n = 589, 57% male, height 1.72 (0.10) m, mass 74 (14) kg, age 31 (7) yr). PCR of genomic DNA was used to determine genotypes using TaqMan probes, then groups were compared using Χ2 and odds ratio (OR) statistics. Results: As hypothesized, the MMP3 rs591058 risk genotype (TT) was less frequent in rugby athletes (28%) compared to non-athletes (33%) (Χ2 = 7.265, P = 0.026; OR = 1.18, 95% confidence intervals (CI) = 0.86-1.63). No differences were found for MMP3 rs679620, rs650108 or TIMP2 rs4789932 between rugby athletes and non-athletes. When RL athletes were compared to non-athletes, the risk genotype (TT) of MMP3 rs591058 was underrepresented in RL athletes (19%) compared to non-athletes (33%). The MMP3 rs679620 ‘protective’ allele (C) was more frequent in RL athletes (55%) compared to non-athletes (48%) (OR = 1.3, 95% CI = 0.98-1.74). However, for MMP3 rs650108 the ‘risk’ allele (A) was overrepresented in RL athletes (32%) compared to non-athletes (26%). There were no genotype differences for any gene variant between RU athletes and non-athletes. The ‘risk’ allele (T) of the MMP3 rs679629 polymorphism and the ‘protective’ allele (G) of the MMP3 rs650108 polymorphism were less common in RL (45%, 68%, respectively) than RU athletes (54%, 76%, respectively). Conclusion: We provide evidence for elite rugby athletes possessing a protective genetic profile regarding tendon and ligament injury risk. Notably, a less frequent rs591058 TT genotype in athletes suggests a lower risk of injury could therefore enhance career success in rugby. Furthermore, RL players appear to have differing genetic characteristics compared to their RU counterparts, which might reflect some differences in physiological demands between codes.Peer reviewedFinal Published versio

    High Density Mesoscopic Atom Clouds in a Holographic Atom Trap

    Full text link
    We demonstrate the production of micron-sized high density atom clouds of interest for meso- scopic quantum information processing. We evaporate atoms from 60 microK, 3x10^14 atoms/cm^3 samples contained in a highly anisotropic optical lattice formed by interfering di racted beams from a holographic phase plate. After evaporating to 1 microK by lowering the con ning potential, in less than a second the atom density reduces to 8x10^13 cm^- 3 at a phase space density approaching unity. Adiabatic recompression of the atoms then increases the density to levels in excess of 1x10^15 cm^-3. The resulting clouds are typically 8 microns in the longest dimension. Such samples are small enough to enable mesoscopic quantum manipulation using Rydberg blockade and have the high densities required to investigate new collision phenomena.Comment: 4 pages, 4 figures, submitted to PR

    Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    Get PDF
    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with ≲ 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of σ_E = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for ∼1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering

    Stability of pulse-like earthquake ruptures

    Get PDF
    Pulse-like ruptures arise spontaneously in many elastodynamic rupture simulations and seem to be the dominant rupture mode along crustal faults. Pulse-like ruptures propagating under steady-state conditions can be efficiently analysed theoretically, but it remains unclear how they can arise and how they evolve if perturbed. Using thermal pressurisation as a representative constitutive law, we conduct elastodynamic simulations of pulse-like ruptures and determine the spatio-temporal evolution of slip, slip rate and pulse width perturbations induced by infinitesimal perturbations in background stress. These simulations indicate that steady-state pulses driven by thermal pressurisation are unstable. If the initial stress perturbation is negative, ruptures stop; conversely, if the perturbation is positive, ruptures grow and transition to either self-similar pulses (at low background stress) or expanding cracks (at elevated background stress). Based on a dynamic dislocation model, we develop an elastodynamic equation of motion for slip pulses, and demonstrate that steady-state slip pulses are unstable if their accrued slip bb is a decreasing function of the uniform background stress Ï„b\tau_\mathrm{b}. This condition is satisfied by slip pulses driven by thermal pressurisation. The equation of motion also predicts quantitatively the growth rate of perturbations, and provides a generic tool to analyse the propagation of slip pulses. The unstable character of steady-state slip pulses implies that this rupture mode is a key one determining the minimum stress conditions for sustainable ruptures along faults, i.e., their ``strength''. Furthermore, slip pulse instabilities can produce a remarkable complexity of rupture dynamics, even under uniform background stress conditions and material properties

    Interactions between a transform fault and arc volcanism in the Bismarck Sea, Papua New Guinea

    Get PDF
    We present a new interpretation of the geological evolution of the western branch of the Bismarck Sea Seismic Lineation (BSSL) region, offshore the northwestern coast of Papua New Guinea, from mapping and interpretation of bathymetry and backscatter data acquired aboard R/V Kilo Moana in 2004. At present, the Schouten Islands parallel the Papua New Guinea coast, but this distribution results from the left-lateral displacement of some of these volcanic islands by the Bismarck Sea Seismic Lineation. The trend of the islands and seamounts was initially aligned N-S and then displaced by the BSSL. Wei Island lies on a large submarine edifice that may have formed as part of a leaky transform. Subsequent to forming, Wei Island was bisected, and its pieces were displaced 45 km. Using this distance together with the strikeslip rate for the Bismarck Sea Seismic Lineation (predicted from the North Bismarck Plate-South Bismarck Plate pole), the division occurred approximately 385,000 years ago.Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUENational Science FoundationMinisterio de Ciencia e Innovaciónpu
    • …
    corecore