417 research outputs found

    Error models for mode-mismatch in linear optics quantum computing

    Full text link
    One of the most significant challenges facing the development of linear optics quantum computing (LOQC) is mode-mismatch, whereby photon distinguishability is introduced within circuits, undermining quantum interference effects. We examine the effects of mode-mismatch on the parity (or fusion) gate, the fundamental building block in several recent LOQC schemes. We derive simple error models for the effects of mode-mismatch on its operation, and relate these error models to current fault tolerant threshold estimates.Comment: 6 pages, 7 figure

    Error tolerance and tradeoffs in loss- and failure-tolerant quantum computing schemes

    Get PDF
    Qubit loss and gate failure are significant problems for the development of scalable quantum computing. Recently, various schemes have been proposed for tolerating qubit loss and gate failure. These include schemes based on cluster and parity states. We show that by designing such schemes specifically to tolerate these error types we cause an exponential blowout in depolarizing noise. We discuss several examples and propose techniques for minimizing this problem. In general, this introduces a tradeoff with other undesirable effects. In some cases this is physical resource requirements, while in others it is noise rates

    Carriage of antimicrobial resistant Escherichia coli in dogs: prevalence, associated risk factors and molecular characteristics

    Get PDF
    Resistance to antimicrobials, in particular that mediated by extended spectrum β-lactamases (ESBL) and AmpC β-lactamases are frequently reported in bacteria causing canine disease as well as in commensal bacteria, which could be a potential health risk for humans they come into contact with. This cross-sectional study aimed to estimate the prevalence and investigate the molecular characteristics of ESBL and plasmid encoded AmpC (pAmpC)-producing E. coli in the mainland UK vet-visiting canine population and, using responses from detailed questionnaires identify factors associated with their carriage. Faecal samples were cultured for antimicrobial resistant (AMR), ESBL and pAmpC-producing E. coli. A subset of ESBL and pAmpC-producing isolates were subjected to multi-locus sequence typing and DNA microarray analyses. Multivariable logistic regression analysis was used to construct models to identify risk factors associated with multidrug resistant (MDR, resistance to three or more antimicrobial classes), fluoroquinolone resistant, ESBL and AmpC-producing E. coli. AMR E.coli were isolated from 44.8% (n = 260) of samples, with 1.9% and 7.1% of samples carrying ESBL and pAmpC-producing E. coli, respectively. MDR E. coli were identified in 18.3% of samples. Recent use of antimicrobials and being fed raw poultry were both identified as risk factors in the outcomes investigated. A number of virulence and resistance genes were identified, including genes associated with extra-intestinal and enteropathogenic E. coli genotypes. Considering the close contact that people have with dogs, the high levels of AMR E. coli in canine faeces may be a potential reservoir of AMR bacteria or resistance determinants

    Spectrochemical differentiation of meningioma tumours based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy

    Get PDF
    Meningiomas are the commonest types of tumours in the central nervous system (CNS). It is a benign type of tumour divided into three WHO grades (I, II and III) associated with tumour growth rate and likelihood of recurrence, where surgical outcomes and patient treatments are dependent on the meningioma grade and histological subtype. The development of alternative approaches based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy could aid meningioma grade determination and its biospectrochemical profiling in an automated fashion. Herein, ATR-FTIR in combination with chemometric techniques is employed to distinguish grade I, grade II and grade I meningiomas that re-occurred. Ninety-nine patients were investigated in this study where their formalin-fixed paraffin-embedded (FFPE) brain tissue samples were analysed by ATR-FTIR spectroscopy. Subsequent classification was performed via principal component analysis plus linear discriminant analysis (PCA-LDA) and partial least squares plus discriminant analysis (PLS-DA). PLS-DA gave the best results where grade I and grade II meningiomas were discriminated with 79% accuracy, 80% sensitivity and 73% specificity, while grade I versus grade I recurrence and grade II versus grade I recurrence were discriminated with 94% accuracy (94% sensitivity and specificity) and 97% accuracy (97% sensitivity and 100% specificity), respectively. Several wavenumbers were identified as possible biomarkers towards tumour differentiation. The majority of these were associated with lipids, protein, DNA/RNA and carbohydrate alterations. These findings demonstrate the potential of ATR-FTIR spectroscopy towards meningioma grade discrimination as a fast, low-cost, non-destructive and sensitive tool for clinical settings. Graphical abstract Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was used to discriminate meningioma WHO grade I, grade II and grade I recurrence tumours

    Safe and just operating spaces for regional social-ecological systems

    Get PDF
    Humanity faces a major global challenge in achieving wellbeing for all, while simultaneously ensuring that the biophysical processes and ecosystem services that underpin wellbeing are exploited within scientifically informed boundaries of sustainability. We propose a framework for defining the safe and just operating space for humanity that integrates social wellbeing into the original planetary boundaries concept (Rockström et al., 2009a,b) for application at regional scales. We argue that such a framework can: (1) increase the policy impact of the boundaries concept as most governance takes place at the regional rather than planetary scale; (2) contribute to the understanding and dissemination of complexity thinking throughout governance and policy-making; (3) act as a powerful metaphor and communication tool for regional equity and sustainability. We demonstrate the approach in two rural Chinese localities where we define the safe and just operating space that lies between an environmental ceiling and a social foundation from analysis of time series drawn from monitored and palaeoecological data, and from social survey statistics respectively. Agricultural intensification has led to poverty reduction, though not eradicated it, but at the expense of environmental degradation. Currently, the environmental ceiling is exceeded for degraded water quality at both localities even though the least well-met social standards are for available piped water and sanitation. The conjunction of these social needs and environmental constraints around the issue of water access and quality illustrates the broader value of the safe and just operating space approach for sustainable development

    Phenotyping Metastatic Brain Tumors Applying Spectrochemical Analyses: Segregation of Different Cancer Types

    Get PDF
    Metastatic brain tumours represent a significant proprotion of tumours identified intraoperatively. A rapid diagnostic method, circumventing the need for histopathology studies could prove clinically useful. As many spectroscopic studies have shown ability to differentitate between different tumour types, this technique was evaluated for use within metastatic brain tumours. Spectrochemical approaches [Raman and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) spectroscopy] were applied to determine how readily it could identify the primary site from the metastatic tumour. Metastases were from primary adenocarcinomas of lung (n=7) and colorectum (n=7), and for comparison, metastatic melanoma (n=7). The objective was to determine if Raman or ATR-FTIR spectroscopy could delineate the origin of the primary tumour. The results demonstrate that there are marked similarities between the two adenocarcinoma groups and whilst Raman and ATR-FTIR can distinguish the three groups with limited success, classification accuracy is greatly improved when combining the adenocarcinoma groups. The use of such techniques in the clinical setting is more likely to be found intraoperatively, determining the presence of a tumour and suggesting the tumour class; however, traditional histopathology would still be needed to identify the primary origin of the tumour

    Stratifying Brain Tumour Histological Sub-Types: The Application of ATR-FTIR Serum Spectroscopy in Secondary Care

    Get PDF
    Patients living with brain tumours have the highest average years of life lost of any cancer, ultimately reducing average life expectancy by 20 years. Diagnosis depends on brain imaging and most often confirmatory tissue biopsy for histology. The majority of patients experience non-specific symptoms, such as headache, and may be reviewed in primary care on multiple occasions before diagnosis is made. Sixty-two per cent of patients are diagnosed on brain imaging performed when they deteriorate and present to the emergency department. Histological diagnosis from invasive surgical biopsy is necessary prior to definitive treatment, because imaging techniques alone have difficulty in distinguishing between several types of brain cancer. However, surgery itself does not necessarily control tumour growth, and risks morbidity for the patient. Due to their similar features on brain scans, glioblastoma, primary central nervous system lymphoma and brain metastases have been known to cause radiological confusion. Non-invasive tests that support stratification of tumour subtype would enhance early personalisation of treatment selection and reduce the delay and risks associated with surgery for many patients. Techniques involving vibrational spectroscopy, such as attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, have previously demonstrated analytical capabilities for cancer diagnostics. In this study, infrared spectra from 641 blood serum samples obtained from brain cancer and control patients have been collected. Firstly, we highlight the capability of ATR-FTIR to distinguish between healthy controls and brain cancer at sensitivities and specificities above 90%, before defining subtle differences in protein secondary structures between patient groups through Amide I deconvolution. We successfully differentiate several types of brain lesions (glioblastoma, meningioma, primary central nervous system lymphoma and metastasis) with balanced accuracies >80%. A reliable blood serum test capable of stratifying brain tumours in secondary care could potentially avoid surgery and speed up the time to definitive therapy, which would be of great value for both neurologists and patients

    The Time-Domain Spectroscopic Survey: Understanding the Optically Variable Sky with SEQUELS in SDSS-III

    Get PDF
    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ~220,000 optically-variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ~320 deg^2 of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample, and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars, and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M-dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population, based on their H-alpha emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ~15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.Comment: 17 pages, 14 figures, submitted to Ap

    Ex Vivo Raman Spectrochemical Analysis Using a Handheld Probe Demonstrates High Predictive Capability of Brain Tumour Status

    Get PDF
    With brain tumour incidence increasing, there is an urgent need for better diagnostic tools. Intraoperatively, brain tumours are diagnosed using a smear preparation reported by a neuropathologist. These have many limitations, including the time taken for the specimen to reach the pathology department and for results to be communicated to the surgeon. There is also a need to assist with resection rates and identifying infiltrative tumour edges intraoperatively to improve clearance. We present a novel study using a handheld Raman probe in conjunction with gold nanoparticles, to detect primary and metastatic brain tumours from fresh brain tissue sent for intraoperative smear diagnosis. Fresh brain tissue samples sent for intraoperative smear diagnosis were tested using the handheld Raman probe after application of gold nanoparticles. Derived Raman spectra were inputted into forward feature extraction algorithms to build a predictive model for sensitivity and specificity of outcome. These results demonstrate an ability to detect primary from metastatic tumours (especially for normal and low grade lesions), in which accuracy, sensitivity and specificity were respectively equal to 98.6%, 94.4% and 99.5% for normal brain tissue; 96.1%, 92.2% and 97.0% for low grade glial tumours; 90.3%, 89.7% and 90.6% for high grade glial tumours; 94.8%, 63.9% and 97.1% for meningiomas; 95.4%, 79.2% and 98.8% for metastases; and 99.6%, 88.9% and 100% for lymphoma, based on smear samples (κ = 0.87). Similar results were observed when compared to the final formalin-fixed paraffin embedded tissue diagnosis (κ = 0.85). Overall, our results have demonstrated the ability of Raman spectroscopy to match results provided by intraoperative smear diagnosis and raise the possibility of use intraoperatively to aid surgeons by providing faster diagnosis. Moving this technology into theatre will allow it to develop further and thus reach its potential in the clinical arena
    • …
    corecore