273 research outputs found
Complex evolving patterns of mass loss from Antarctica’s largest glacier
Pine Island Glacier has contributed more to sea level rise over the past four decades than any other glacier in Antarctica. Model projections indicate that this will continue in the future but at conflicting rates. Some models suggest that mass loss could dramatically increase over the next few decades, resulting in a rapidly growing contribution to sea level and fast retreat of the grounding line, where the grounded ice meets the ocean. Other models indicate more moderate losses. Resolving this contrasting behaviour is important for sea level rise projections. Here, we use high-resolution satellite observations of elevation change since 2010 to show that thinning rates are now highest along the slow-flow margins of the glacier and that the present-day amplitude and pattern of elevation change is inconsistent with fast grounding-line migration and the associated rapid increase in mass loss over the next few decades. Instead, our results support model simulations that imply only modest changes in grounding-line location over that timescale. We demonstrate how the pattern of thinning is evolving in complex ways both in space and time and how rates in the fast-flowing central trunk have decreased by about a factor five since 2007
A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry
The Antarctic grounding zone, which is the transition between the fully grounded ice sheet to freely floating ice shelf, plays a critical role in ice sheet stability, mass budget calculations, and ice sheet model projections. It is therefore important to continuously monitor its location and migration over time. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries: the inland limit of tidal flexure (Point F), inshore limit of hydrostatic equilibrium (Point H), and the break in slope (Point Ib). This dataset was derived from automated techniques developed in this study, using ICESat-2 laser altimetry repeat tracks between 30 March 2019 and 30 September 2020. The new grounding zone product has a near-complete coverage of the Antarctic Ice Sheet with a total of 21 346 Point F, 18 149 Point H, and 36 765 Point Ib locations identified, including the difficult-to-survey grounding zones, such as the fast-flowing glaciers draining into the Amundsen Sea embayment. The locations of newly derived ICESat-2 landward limit of tidal flexure agree well with the most recent differential synthetic aperture radar interferometry (DInSAR) observations in 2018, with a mean absolute separation and standard deviation of 0.02 and 0.02 km, respectively. By comparing the ICESat-2-derived grounding zone with the previous grounding zone products, we find a grounding line retreat of up to 15 km on the Crary Ice Rise of Ross Ice Shelf and a pervasive landward grounding line migration along the Amundsen Sea embayment during the past 2 decades. We also identify the presence of ice plains on the Filchner–Ronne Ice Shelf and the influence of oscillating ocean tides on grounding zone migration. The product derived from this study is available at https://doi.org/10.5523/bris.bnqqyngt89eo26qk8keckglww (Li et al., 2021) and is archived and maintained at the National Snow and Ice Data Center
Formation of Super-Earths
Super-Earths are the most abundant planets known to date and are
characterized by having sizes between that of Earth and Neptune, typical
orbital periods of less than 100 days and gaseous envelopes that are often
massive enough to significantly contribute to the planet's overall radius.
Furthermore, super-Earths regularly appear in tightly-packed multiple-planet
systems, but resonant configurations in such systems are rare. This chapters
summarizes current super-Earth formation theories. It starts from the formation
of rocky cores and subsequent accretion of gaseous envelopes. We follow the
thermal evolution of newly formed super-Earths and discuss their atmospheric
mass loss due to disk dispersal, photoevaporation, core-cooling and collisions.
We conclude with a comparison of observations and theoretical predictions,
highlighting that even super-Earths that appear as barren rocky cores today
likely formed with primordial hydrogen and helium envelopes and discuss some
paths forward for the future.Comment: Invited review accepted for publication in the 'Handbook of
Exoplanets,' Planet Formation section, Springer Reference Works, Juan Antonio
Belmonte and Hans Deeg, Ed
Exploring the role of HR practitioners in pursuit of organizational effectiveness in higher education institutions
This paper focuses on how HR professionals view their role in contributing to organizational effectiveness in the HE sector. Drawing on interview data, we trace how rival definitions of organizational effectiveness relate to two emergent conceptions of rationality. Firstly we identify instrumental forms of rationality based on assessments of how well (or efficiently) organisations achieve pre-ordained objectives. Secondly, we identify stakeholder satisfaction models of organisational effectiveness, which concern the extent to which competing needs of stakeholders are satisfied and, thus, presuppose a more dialogic view of rationality. The context for our discussion is the UK Higher Education sector and, drawing on our research, we argue that universities can be seen as moving from a stakeholder satisfaction model to an instrumentally rational model of organisational effectiveness. Our findings suggest that HR professionals do support attempts to re-orientate their institutions towards a top-down form of organisation, which would privilege high level objectives and efficiency (thus following the prescriptions of the New Public Management movement). This implies a move away from a more traditional view of universities as discursive and participatory organisations, where effectiveness is regarded as meeting the varied needs of stakeholders, such as academics, students and the wider society, in a balanced way. However, whilst the HRM professionals largely favour such a shift, they acknowledge limitations to the extent that is practical or even entirely desirable
The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star
We report observations of a possible young transiting planet orbiting a
previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori
region. The candidate was found as part of the Palomar Transient Factory (PTF)
Orion project. It has a photometric transit period of 0.448413 +- 0.000040
days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision
radial velocity (RV) observations and adaptive optics imaging suggest that the
star is not an eclipsing binary, and that it is unlikely that a background
source is blended with the target and mimicking the observed transit. RV
observations with the Hobby-Eberly and Keck telescopes yield an RV that has the
same period as the photometric event, but is offset in phase from the transit
center by approximately -0.22 periods. The amplitude (half range) of the RV
variations is 2.4 km/s and is comparable with the expected RV amplitude that
stellar spots could induce. The RV curve is likely dominated by stellar spot
modulation and provides an upper limit to the projected companion mass of M_p
sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i
orb, of the candidate planet from modeling of the transit light curve, we find
an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4
M_Jup. This limit implies that the planet is orbiting close to, if not inside,
its Roche limiting orbital radius, so that it may be undergoing active mass
loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to
affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to
Ap
Architecture and Dynamics of Kepler's Candidate Multiple Transiting Planet Systems
About one-third of the ~1200 transiting planet candidates detected in the
first four months of \ik data are members of multiple candidate systems. There
are 115 target stars with two candidate transiting planets, 45 with three, 8
with four, and one each with five and six. We characterize the dynamical
properties of these candidate multi-planet systems. The distribution of
observed period ratios shows that the vast majority of candidate pairs are
neither in nor near low-order mean motion resonances. Nonetheless, there are
small but statistically significant excesses of candidate pairs both in
resonance and spaced slightly too far apart to be in resonance, particularly
near the 2:1 resonance. We find that virtually all candidate systems are
stable, as tested by numerical integrations that assume a nominal mass-radius
relationship. Several considerations strongly suggest that the vast majority of
these multi-candidate systems are true planetary systems. Using the observed
multiplicity frequencies, we find that a single population of planetary systems
that matches the higher multiplicities underpredicts the number of
singly-transiting systems. We provide constraints on the true multiplicity and
mutual inclination distribution of the multi-candidate systems, revealing a
population of systems with multiple super-Earth-size and Neptune-size planets
with low to moderate mutual inclinations.Comment: 27 pages, 19 figures, 8 tables, emulateapj style. Accepted to ApJ.
This version includes several minor changes to the tex
Recommended from our members
The heterogeneity of wooded-agricultural landscape mosaics influences woodland bird community assemblages
Context
Landscape heterogeneity (the composition and configuration of different landcover types) plays a key role in shaping woodland bird assemblages in wooded-agricultural mosaics. Understanding how species respond to landscape factors could contribute to preventing further decline of woodland bird populations.
Objective
To investigate how woodland birds with different species traits respond to landscape heterogeneity, and to identify whether specific landcover types are important for maintaining diverse populations in wooded-agricultural environments.
Methods
Birds were sampled from woodlands in 58 2 x 2 km tetrads across southern Britain. Landscape heterogeneity was quantified for each tetrad. Bird assemblage response was determined using redundancy analysis combined with variation partitioning and response trait analyses.
Results
For woodland bird assemblages, the independent explanatory importance of landscape composition and landscape configuration variables were closely interrelated. When considered simultaneously during variation partitioning, the community response was better represented by compositional variables. Different species responded to different landscape features and this could be explained by traits relating to woodland association, foraging strata and nest location. Ubiquitous, generalist species, many of which were hole-nesters or ground foragers, correlated positively with urban landcover while specialists of broadleaved woodland avoided landscapes containing urban areas. Species typical of coniferous woodland correlated with large conifer plantations.
Conclusions
At the 2 x 2 km scale, there was evidence that the availability of resources provided by proximate landcover types was highly important for shaping woodland bird assemblages. Further research to disentangle the effects of composition and configuration at different spatial scales is advocated
Development and validation of a targeted gene sequencing panel for application to disparate cancers
Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour’s molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy
- …