50,172 research outputs found
Fatigue failure load indicator
An indicator for recording the load at which a fatigue specimen breaks during the last cycle of a fatigue test is described. A load cell is attached to the specimen which is alternately subjected to tension and compression loads. The output of the load cell which is proportional to the load on the specimen is applied to the input of a peak detector. Each time the specimen is subjected to a compression load, means are provided for applying a positive voltage to the rest of the peak detector to reset it. During the last cycle of the tension load the peak detector measures the maximum load on the specimen. Means are provided for disconnecting the load cell from the peak detector when there is a failure in the specimen
High precision U-PB geochronology and implications for the tectonic evolution of the Superior Province
The underlying mechanisms of Archean tectonics and the degree to which modern plate tectonic models are applicable early in Earth's history continue to be a subject of considerable debate. A precise knowledge of the timing of geological events is of the utmost importance in studying this problem. The high precision U-Pb method has been applied in recent years to rock units in many areas of the Superior Province. Most of these data have precisions of about + or - 2-3 Ma. The resulting detailed chronologies of local igneous development and the regional age relationships furnish tight constraints on any Archean tectonic model. Superior province terrains can be classified into 3 types: (1) low grade areas dominated by meta-volcanic rocks (greenstone belts); (2) high grade, largely metaplutonic areas with abundant orthogneiss and foliated to massive I-type granitoid bodies; and (3) high grade areas with abundant metasediments, paragneiss and S-type plutons. Most of the U-Pb age determinations have been done on type 1 terrains with very few having been done in type 3 terrains. A compilation of over 120 ages indicates that the major part of igneous activity took place in the period 2760-2670 Ma, known as the Kenoran event. This event was ubiquitous throughout the Superior Province
On the Uniqueness of Solution of Magnetostatic Vector‐potential Problems by Three‐dimensional Finite‐element Methods
In this paper, particular attention is paid to the impact of finite‐element approximation on uniqueness and to approximations implicit in finite element formulations from the uniqueness requirements standpoint. It is also shown that the flux density is unique without qualifications. The theoretical and numerical uniqueness of the magnetic vector potential in three‐dimensional problems is also given. This analysis is restricted to linear, isotropic media with Dirichlet Boundary conditions. As an interesting consequence of this analysis it is shown that, under usual conditions adopted in obtaining three‐dimensional finite‐element solutions, it is not necessary to specify div Ā in order that Ā be uniquely defined
Spectral reflectances of natural targets for use in remote sensing studies
A collection of spectral reflectances of 156 natural targets is presented in a uniform format. For each target both a graphical plot and a digital tabulation of reflectance is given. The data were taken from the literature and include laboratory, field, and aircraft measurements. A discussion of the different measurements of reflectance is given, along with the changes in apparent reflectance when targets are viewed through the atmosphere. The salient features of the reflectance curves of common target types are presented and discussed
Recommended from our members
K-Electron Binding Energy Shifts in Fluorinated Methanes and Benzenes: Comparison of a CNDO Potential Model with Experiment
TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes
The internet has brought about great change in the astronomical community,
but this interconnectivity is just starting to be exploited for use in
instrumentation. Utilizing the internet for communicating between distributed
astronomical systems is still in its infancy, but it already shows great
potential. Here we present an example of a distributed network of telescopes
that performs more efficiently in synchronous operation than as individual
instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of
telescopes at LANL that has intelligent intercommunication, combined with
wide-field optics, temporal monitoring software, and deep-field follow-up
capability all working in closed-loop real-time operation. The Telescope ALert
Operations Network (TALON) is a network server that allows intercommunication
of alert triggers from external and internal resources and controls the
distribution of these to each of the telescopes on the network. TALON is
designed to grow, allowing any number of telescopes to be linked together and
communicate. Coupled with an intelligent alert client at each telescope, it can
analyze and respond to each distributed TALON alert based on the telescopes
needs and schedule.Comment: Presentation at SPIE 2004, Glasgow, Scotland (UK
Radiative Transfer in Star Formation: Testing FLD and Hybrid Methods
We perform a comparison between two radiative transfer algorithms commonly
employed in hydrodynamical calculations of star formation: grey flux limited
diffusion and the hybrid scheme, in addition we compare these algorithms to
results from the Monte-Carlo radiative transfer code MOCASSIN. In disc like
density structures the hybrid scheme performs significantly better than the FLD
method in the optically thin regions, with comparable results in optically
thick regions. In the case of a forming high mass star we find the FLD method
significantly underestimates the radiation pressure by a factor of ~100.Comment: 4 Pages; to appear in the proceedings of 'The Labyrinth of Star
Formation', Crete, 18-22 June 201
Computer simulations of electrorheological fluids in the dipole-induced dipole model
We have employed the multiple image method to compute the interparticle force
for a polydisperse electrorheological (ER) fluid in which the suspended
particles can have various sizes and different permittivites. The point-dipole
(PD) approximation being routinely adopted in computer simulation of ER fluids
is shown to err considerably when the particles approach and finally touch due
to multipolar interactions. The PD approximation becomes even worse when the
dielectric contrast between the particles and the host medium is large. From
the results, we show that the dipole-induced-dipole (DID) model yields very
good agreements with the multiple image results for a wide range of dielectric
contrasts and polydispersity. As an illustration, we have employed the DID
model to simulate the athermal aggregation of particles in ER fluids both in
uniaxial and rotating fields. We find that the aggregation time is
significantly reduced. The DID model accounts for multipolar interaction
partially and is simple to use in computer simulation of ER fluids.Comment: 22 pages, 7 figures, submitted to Phys. Rev.
Survival of the d-wave superconducting state near the edge of antiferromagnetism in the cuprate phase diagram
In the cuprate superconductor , hole doping in the
layers is controlled by both oxygen content and the degree of oxygen-ordering.
At the composition , the ordering can occur at room
temperature, thereby tuning the hole doping so that the superconducting
critical temperature gradually rises from zero to 20 K. Here we exploit this to
study the c-axis penetration depth as a function of temperature and doping. The
temperature dependence shows the d-wave superconductor surviving to very low
doping, with no sign of another ordered phase interfering with the nodal
quasiparticles. The only apparent doping dependence is a smooth decline of
superfluid density as Tc decreases.Comment: 4 pages, 3 figure
- …