54,431 research outputs found
Magnifying superlens in the visible frequency range
In this communication we introduce a new design of the magnifying superlens
and demonstrate it in the experiment.Comment: 3pages, 1 figur
The Deflection of the Two Interacting Coronal Mass Ejections of 2010 May 23-24 as Revealed by Combined In situ Measurements and Heliospheric Imaging
In 2010 May 23-24, SDO observed the launch of two successive coronal mass
ejections (CMEs), which were subsequently tracked by the SECCHI suite onboard
STEREO. Using the COR2 coronagraphs and the heliospheric imagers (HIs), the
initial direction of both CMEs is determined to be slightly west of the
Sun-Earth line. We derive the CME kinematics, including the evolution of the
CME expansion until 0.4 AU. We find that, during the interaction, the second
CME decelerates from a speed above 500 km/s to 380 km/s the speed of the
leading edge of the first CME. STEREO observes a complex structure composed of
two different bright tracks in HI2-A but only one bright track in HI2-B. In
situ measurements from Wind show an "isolated" ICME, with the geometry of a
flux rope preceded by a shock. Measurements in the sheath are consistent with
draping around the transient. By combining remote-sensing and in situ
measurements, we determine that this event shows a clear instance of deflection
of two CMEs after their collision, and we estimate the deflection of the first
CME to be about 10 degrees towards the Sun-Earth line. The arrival time,
arrival speed and radius at Earth of the first CME are best predicted from
remote-sensing observations taken before the collision of the CMEs. Due to the
over-expansion of the CME after the collision, there are few, if any, signs of
interaction in in situ measurements. This study illustrates that complex
interactions during the Sun-to-Earth propagation may not be revealed by in situ
measurements alone.Comment: 14 pages, 8 figures, 1 table, accepted to the Astrophysical Journa
Indirect Inference for Time Series Using the Empirical Characteristic Function and Control Variates
We estimate the parameter of a stationary time series process by minimizing
the integrated weighted mean squared error between the empirical and simulated
characteristic function, when the true characteristic functions cannot be
explicitly computed. Motivated by Indirect Inference, we use a Monte Carlo
approximation of the characteristic function based on iid simulated blocks. As
a classical variance reduction technique, we propose the use of control
variates for reducing the variance of this Monte Carlo approximation. These two
approximations yield two new estimators that are applicable to a large class of
time series processes. We show consistency and asymptotic normality of the
parameter estimators under strong mixing, moment conditions, and smoothness of
the simulated blocks with respect to its parameter. In a simulation study we
show the good performance of these new simulation based estimators, and the
superiority of the control variates based estimator for Poisson driven time
series of counts.Comment: 38 pages, 2 figure
Far-field optical microscope with nanometer-scale resolution based on in-plane surface plasmon imaging
A new far-field optical microscopy technique capable of reaching
nanometer-scale resolution has been developed recently using the in-plane image
magnification by surface plasmon polaritons. This microscopy is based on the
optical properties of a metal-dielectric interface that may, in principle,
provide extremely large values of the effective refractive index n up to
100-1000 as seen by the surface plasmons. Thus, the theoretical diffraction
limit on resolution becomes lambda/2n, and falls into the nanometer-scale
range. The experimental realization of the microscope has demonstrated the
optical resolution better than 50 nm for 502 nm illumination wavelength.
However, the theory of such surface plasmon-based far-field microscope
presented so far gives an oversimplified picture of its operation. For example,
the imaginary part of the metal dielectric constant severely limits the
surface-plasmon propagation and the shortest attainable wavelength in most
cases, which in turn limits the microscope magnification. Here I describe how
this limitation has been overcome in the experiment, and analyze the practical
limits on the surface plasmon microscope resolution. In addition, I present
more experimental results, which strongly support the conclusion of extremely
high spatial resolution of the surface plasmon microscope.Comment: 23 pages, 9 figures, will be published in the topical issue on
Nanostructured Optical Metamaterials of the Journal of Optics A: Pure and
Applied Optics, Manuscript revised in response to referees comment
The Quantum Cosmological Wavefunction at Very Early Times for a Quadratic Gravity Theory
The quantum cosmological wavefunction for a quadratic gravity theory derived
from the heterotic string effective action is obtained near the inflationary
epoch and during the initial Planck era. Neglecting derivatives with respect to
the scalar field, the wavefunction would satisfy a third-order differential
equation near the inflationary epoch which has a solution that is singular in
the scale factor limit . When scalar field derivatives are included,
a sixth-order differential equation is obtained for the wavefunction and the
solution by Mellin transform is regular in the limit. It follows that
inclusion of the scalar field in the quadratic gravity action is necessary for
consistency of the quantum cosmology of the theory at very early times.Comment: Tex, 13 page
Light curves for bump Cepheids computed with a dynamically zoned pulsation code
The dynamically zoned pulsation code developed by Castor, Davis, and Davison was used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. The use of a code that is capable of producing reliable light curves demonstrates that the light and velocity curves for 9.8 day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the 'evolutionary mass.' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators
Maximal violation of Bell inequalities by position measurements
We show that it is possible to find maximal violations of the CHSH-Bell
inequality using only position measurements on a pair of entangled
non-relativistic free particles. The device settings required in the CHSH
inequality are done by choosing one of two times at which position is measured.
For different assignments of the "+" outcome to positions, namely to an
interval, to a half line, or to a periodic set, we determine violations of the
inequalities, and states where they are attained. These results have
consequences for the hidden variable theories of Bohm and Nelson, in which the
two-time correlations between distant particle trajectories have a joint
distribution, and hence cannot violate any Bell inequality.Comment: 13 pages, 4 figure
Frustration, interaction strength and ground-state entanglement in complex quantum systems
Entanglement in the ground state of a many-body quantum system may arise when
the local terms in the system Hamiltonian fail to commute with the interaction
terms in the Hamiltonian. We quantify this phenomenon, demonstrating an analogy
between ground-state entanglement and the phenomenon of frustration in spin
systems. In particular, we prove that the amount of ground-state entanglement
is bounded above by a measure of the extent to which interactions frustrate the
local terms in the Hamiltonian. As a corollary, we show that the amount of
ground-state entanglement is bounded above by a ratio between parameters
characterizing the strength of interactions in the system, and the local energy
scale. Finally, we prove a qualitatively similar result for other energy
eigenstates of the system.Comment: 11 pages, 3 figure
- âŠ