54,431 research outputs found

    Magnifying superlens in the visible frequency range

    Get PDF
    In this communication we introduce a new design of the magnifying superlens and demonstrate it in the experiment.Comment: 3pages, 1 figur

    The Deflection of the Two Interacting Coronal Mass Ejections of 2010 May 23-24 as Revealed by Combined In situ Measurements and Heliospheric Imaging

    Full text link
    In 2010 May 23-24, SDO observed the launch of two successive coronal mass ejections (CMEs), which were subsequently tracked by the SECCHI suite onboard STEREO. Using the COR2 coronagraphs and the heliospheric imagers (HIs), the initial direction of both CMEs is determined to be slightly west of the Sun-Earth line. We derive the CME kinematics, including the evolution of the CME expansion until 0.4 AU. We find that, during the interaction, the second CME decelerates from a speed above 500 km/s to 380 km/s the speed of the leading edge of the first CME. STEREO observes a complex structure composed of two different bright tracks in HI2-A but only one bright track in HI2-B. In situ measurements from Wind show an "isolated" ICME, with the geometry of a flux rope preceded by a shock. Measurements in the sheath are consistent with draping around the transient. By combining remote-sensing and in situ measurements, we determine that this event shows a clear instance of deflection of two CMEs after their collision, and we estimate the deflection of the first CME to be about 10 degrees towards the Sun-Earth line. The arrival time, arrival speed and radius at Earth of the first CME are best predicted from remote-sensing observations taken before the collision of the CMEs. Due to the over-expansion of the CME after the collision, there are few, if any, signs of interaction in in situ measurements. This study illustrates that complex interactions during the Sun-to-Earth propagation may not be revealed by in situ measurements alone.Comment: 14 pages, 8 figures, 1 table, accepted to the Astrophysical Journa

    Indirect Inference for Time Series Using the Empirical Characteristic Function and Control Variates

    Full text link
    We estimate the parameter of a stationary time series process by minimizing the integrated weighted mean squared error between the empirical and simulated characteristic function, when the true characteristic functions cannot be explicitly computed. Motivated by Indirect Inference, we use a Monte Carlo approximation of the characteristic function based on iid simulated blocks. As a classical variance reduction technique, we propose the use of control variates for reducing the variance of this Monte Carlo approximation. These two approximations yield two new estimators that are applicable to a large class of time series processes. We show consistency and asymptotic normality of the parameter estimators under strong mixing, moment conditions, and smoothness of the simulated blocks with respect to its parameter. In a simulation study we show the good performance of these new simulation based estimators, and the superiority of the control variates based estimator for Poisson driven time series of counts.Comment: 38 pages, 2 figure

    Far-field optical microscope with nanometer-scale resolution based on in-plane surface plasmon imaging

    Full text link
    A new far-field optical microscopy technique capable of reaching nanometer-scale resolution has been developed recently using the in-plane image magnification by surface plasmon polaritons. This microscopy is based on the optical properties of a metal-dielectric interface that may, in principle, provide extremely large values of the effective refractive index n up to 100-1000 as seen by the surface plasmons. Thus, the theoretical diffraction limit on resolution becomes lambda/2n, and falls into the nanometer-scale range. The experimental realization of the microscope has demonstrated the optical resolution better than 50 nm for 502 nm illumination wavelength. However, the theory of such surface plasmon-based far-field microscope presented so far gives an oversimplified picture of its operation. For example, the imaginary part of the metal dielectric constant severely limits the surface-plasmon propagation and the shortest attainable wavelength in most cases, which in turn limits the microscope magnification. Here I describe how this limitation has been overcome in the experiment, and analyze the practical limits on the surface plasmon microscope resolution. In addition, I present more experimental results, which strongly support the conclusion of extremely high spatial resolution of the surface plasmon microscope.Comment: 23 pages, 9 figures, will be published in the topical issue on Nanostructured Optical Metamaterials of the Journal of Optics A: Pure and Applied Optics, Manuscript revised in response to referees comment

    The Quantum Cosmological Wavefunction at Very Early Times for a Quadratic Gravity Theory

    Full text link
    The quantum cosmological wavefunction for a quadratic gravity theory derived from the heterotic string effective action is obtained near the inflationary epoch and during the initial Planck era. Neglecting derivatives with respect to the scalar field, the wavefunction would satisfy a third-order differential equation near the inflationary epoch which has a solution that is singular in the scale factor limit a(t)→0a(t)\to 0. When scalar field derivatives are included, a sixth-order differential equation is obtained for the wavefunction and the solution by Mellin transform is regular in the a→0a\to 0 limit. It follows that inclusion of the scalar field in the quadratic gravity action is necessary for consistency of the quantum cosmology of the theory at very early times.Comment: Tex, 13 page

    Light curves for bump Cepheids computed with a dynamically zoned pulsation code

    Get PDF
    The dynamically zoned pulsation code developed by Castor, Davis, and Davison was used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. The use of a code that is capable of producing reliable light curves demonstrates that the light and velocity curves for 9.8 day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the 'evolutionary mass.' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators

    Maximal violation of Bell inequalities by position measurements

    Get PDF
    We show that it is possible to find maximal violations of the CHSH-Bell inequality using only position measurements on a pair of entangled non-relativistic free particles. The device settings required in the CHSH inequality are done by choosing one of two times at which position is measured. For different assignments of the "+" outcome to positions, namely to an interval, to a half line, or to a periodic set, we determine violations of the inequalities, and states where they are attained. These results have consequences for the hidden variable theories of Bohm and Nelson, in which the two-time correlations between distant particle trajectories have a joint distribution, and hence cannot violate any Bell inequality.Comment: 13 pages, 4 figure

    Frustration, interaction strength and ground-state entanglement in complex quantum systems

    Get PDF
    Entanglement in the ground state of a many-body quantum system may arise when the local terms in the system Hamiltonian fail to commute with the interaction terms in the Hamiltonian. We quantify this phenomenon, demonstrating an analogy between ground-state entanglement and the phenomenon of frustration in spin systems. In particular, we prove that the amount of ground-state entanglement is bounded above by a measure of the extent to which interactions frustrate the local terms in the Hamiltonian. As a corollary, we show that the amount of ground-state entanglement is bounded above by a ratio between parameters characterizing the strength of interactions in the system, and the local energy scale. Finally, we prove a qualitatively similar result for other energy eigenstates of the system.Comment: 11 pages, 3 figure
    • 

    corecore