3,480 research outputs found
Measuring the Cosmic Equation of State with Counts of Galaxies
The classical dN/dz test allows the determination of fundamental cosmological
parameters from the evolution of the cosmic volume element. This test is
applied by measuring the redshift distribution of a tracer whose evolution in
number density is known. In the past, ordinary galaxies have been used as such
a tracer; however, in the absence of a complete theory of galaxy formation,
that method is fraught with difficulties. In this paper, we propose studying
instead the evolution of the apparent abundance of dark matter halos as a
function of their circular velocity, observable via the linewidths or rotation
speeds of visible galaxies. Upcoming redshift surveys will allow the linewidth
distribution of galaxies to be determined at both z~1 and the present day. In
the course of studying this test, we have devised a rapid, improved
semi-analytic method for calculating the circular velocity distribution of dark
halos based upon the analytic mass function of Sheth et al. (1999) and the
formation time distribution of Lacey & Cole (1993). We find that if selection
effects are well-controlled and minimal external constraints are applied, the
planned DEEP Redshift Survey should allow the measurement of the cosmic
equation-of-state parameter w to 10% (as little as 3% if Omega_m has been
well-determined from other observations). This type of test has the potential
also to provide a constraint on any evolution of w such as that predicted by
``tracker'' models.Comment: 4 pages plus 3 embedded figures; version approved by Ap. J. Letters.
A greatly improved error analysis has been added, along with a figure showing
complementarity to other cosmological test
Thermodynamics predicts how confinement modifies hard-sphere dynamics
We study how confining the equilibrium hard-sphere fluid to restrictive one-
and two-dimensional channels with smooth interacting walls modifies its
structure, dynamics, and entropy using molecular dynamics and transition-matrix
Monte Carlo simulations. Although confinement strongly affects local
structuring, the relationships between self-diffusivity, excess entropy, and
average fluid density are, to an excellent approximation, independent of
channel width or particle-wall interactions. Thus, thermodynamics can be used
to predict how confinement impacts dynamics.Comment: 4 pages, 4 figure
Measuring Galaxy Environments with Deep Redshift Surveys
We study the applicability of several galaxy environment measures
(n^th-nearest-neighbor distance, counts in an aperture, and Voronoi volume)
within deep redshift surveys. Mock galaxy catalogs are employed to mimic
representative photometric and spectroscopic surveys at high redshift (z ~ 1).
We investigate the effects of survey edges, redshift precision, redshift-space
distortions, and target selection upon each environment measure. We find that
even optimistic photometric redshift errors (\sigma_z = 0.02) smear out the
line-of-sight galaxy distribution irretrievably on small scales; this
significantly limits the application of photometric redshift surveys to
environment studies. Edges and holes in a survey field dramatically affect the
estimation of environment, with the impact of edge effects depending upon the
adopted environment measure. These edge effects considerably limit the
usefulness of smaller survey fields (e.g. the GOODS fields) for studies of
galaxy environment. In even the poorest groups and clusters, redshift-space
distortions limit the effectiveness of each environment statistic; measuring
density in projection (e.g. using counts in a cylindrical aperture or a
projected n^th-nearest-neighbor distance measure) significantly improves the
accuracy of measures in such over-dense environments. For the DEEP2 Galaxy
Redshift Survey, we conclude that among the environment estimators tested the
projected n^th-nearest-neighbor distance measure provides the most accurate
estimate of local galaxy density over a continuous and broad range of scales.Comment: 17 pages including 16 figures, accepted to Ap
Loss of Signal: Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap
The editors of Loss of Signal wanted to document the aeromedical lessons learned from the Space Shuttle Columbia mishap. The book is intended to be an accurate and easily understood account of the entire process of recovering and analyzing the human remains, investigating and analyzing what happened to the crew, and using the resulting information to recommend ways to prevent mishaps and provide better protection to crewmembers. Our goal is to capture the passions of those who devoted their energies in responding to the Columbia mishap. We have reunited authors who were directly involved in each of these aspects. These authors tell the story of their efforts related to the Columbia mishap from their point of view. They give the reader an honest description of their responsibilities and share their challenges, their experiences, and their lessons learned on how to enhance crew safety and survival, and how to be prepared to support space mishap investigations. As a result of this approach, a few of the chapters have some redundancy of information and authors' opinions may differ. In no way did we or they intend to assign blame or criticize anyone's professional efforts. All those involved did their best to obtain the truth in the situations to which they were assigned
Cooperative Origin of Low-Density Domains in Liquid Water
We study the size of clusters formed by water molecules possessing large
enough tetrahedrality with respect to their nearest neighbors. Using Monte
Carlo simulation of the SPC/E model of water, together with a geometric
analysis based on Voronoi tessellation, we find that regions of lower density
than the bulk are formed by accretion of molecules into clusters exceeding a
minimum size. Clusters are predominantly linear objects and become less compact
as they grow until they reach a size beyond which further accretion is not
accompanied by a density decrease. The results suggest that the formation of
"ice-like" regions in liquid water is cooperative.Comment: 16 pages, 6 figure
AEGIS: Chandra Observation of DEEP2 Galaxy Groups and Clusters
We present a 200 ksec Chandra observation of seven spectroscopically
selected, high redshift (0.75 < z < 1.03) galaxy groups and clusters discovered
by the DEEP2 Galaxy Redshift Survey in the Extended Groth Strip (EGS). X-ray
emission at the locations of these systems is consistent with background. The
3-sigma upper limits on the bolometric X-ray luminosities (L_X) of these
systems put a strong constraint on the relation between L_X and the velocity
dispersion of member galaxies sigma_gal at z~1; the DEEP2 systems have lower
luminosity than would be predicted by the local relation. Our result is
consistent with recent findings that at high redshift, optically selected
clusters tend to be X-ray underluminous. A comparison with mock catalogs
indicates that it is unlikely that this effect is entirely caused by a
measurement bias between sigma_gal and the dark matter velocity dispersion.
Physically, the DEEP2 systems may still be in the process of forming and hence
not fully virialized, or they may be deficient in hot gas compared to local
systems. We find only one possibly extended source in this Chandra field, which
happens to lie outside the DEEP2 coverage.Comment: 5 pages, 3 figures. Accepted for publication in AEGIS ApJ Letters
special editio
Pruritus is a common feature in sheep infected with the BSE agent.
BACKGROUND: The variability in the clinical or pathological presentation of transmissible spongiform encephalopathies (TSEs) in sheep, such as scrapie and bovine spongiform encephalopathy (BSE), has been attributed to prion protein genotype, strain, breed, clinical duration, dose, route and type of inoculum and the age at infection. The study aimed to describe the clinical signs in sheep infected with the BSE agent throughout its clinical course to determine whether the clinical signs were as variable as described for classical scrapie in sheep. The clinical signs were compared to BSE-negative sheep to assess if disease-specific clinical markers exist.
RESULTS: Forty-seven (34%) of 139 sheep, which comprised 123 challenged sheep and 16 undosed controls, were positive for BSE. Affected sheep belonged to five different breeds and three different genotypes (ARQ/ARQ, VRQ/VRQ and AHQ/AHQ). None of the controls or BSE exposed sheep with ARR alleles were positive. Pruritus was present in 41 (87%) BSE positive sheep; the remaining six were judged to be pre-clinically infected. Testing of the response to scratching along the dorsum of a sheep proved to be a good indicator of clinical disease with a test sensitivity of 85% and specificity of 98% and usually coincided with weight loss. Clinical signs that were displayed significantly earlier in BSE positive cases compared to negative cases were behavioural changes, pruritic behaviour, a positive scratch test, alopecia, skin lesions, teeth grinding, tremor, ataxia, loss of weight and loss of body condition. The frequency and severity of each specific clinical sign usually increased with the progression of disease over a period of 16-20 weeks.
CONCLUSION: Our results suggest that BSE in sheep presents with relatively uniform clinical signs, with pruritus of increased severity and abnormalities in behaviour or movement as the disease progressed. Based on the studied sheep, these clinical features appear to be independent of breed, affected genotype, dose, route of inoculation and whether BSE was passed into sheep from cattle or from other sheep, suggesting that the clinical phenotype of BSE is influenced by the TSE strain more than by other factors. The clinical phenotype of BSE in the genotypes and breed studied was indistinguishable from that described for classical scrapie cases
Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells
The authors investigate the effect of oxygen implantation and rapid thermal annealing in ZnO∕ZnMgOmultiple quantum wells using photoluminescence. A blueshift in the photoluminescence is observed in the implanted samples. For a low implantation dose, a significant increase of activation energy and a slight increase of the photoluminescence efficiency are observed. This is attributed to the suppression of the point defect complexes and transformation between defect structures by implantation and subsequent rapid thermal annealing. A high dose of implantation leads to lattice damage and agglomeration of defects leading to large defect clusters, which result to an increase in nonradiative recombination.The authors gratefully acknowledge the Australian Research
Council for financial support and Swinburne University
of Technology for Strategic Initiative funding. One of
the authors X.W. acknowledges partial financial support of
the Chinese National Natural Science Foundation
10364004 and the Yunnan Natural Science Foundation
2003E0013M
- …