1,461 research outputs found

    NASA Crew Launch Vehicle Flight Test Options

    Get PDF
    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented

    The Role of Mediators in the Development of Longitudinal Mathematics Achievement Associations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/115932/1/cdev12416_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/115932/2/cdev12416.pd

    Coordinated regulation of transcription by CcpA and the \u3ci\u3eStaphylococcus aureus\u3c/i\u3e twocomponent system HptRS

    Get PDF
    The success of Staphylococcus aureus as a pathogen is due in part to its ability to adapt to changing environmental conditions using signal transduction pathways, such as metaboliteresponsive regulators and two-component systems. S. aureus has a two-component system encoded by the gene pair sav0224 (hptS) and sav0223 (hptR) that regulate the hexose phosphate transport (uhpT) system in response to extracellular glucose-6-phosphate. Glycolytic intermediates such as glucose-6-phosphate are important carbon sources that also modulate the activity of the global metabolite-responsive transcriptional regulator CcpA. Because uhpT has a putative CcpA binding site in its promoter and it is regulated by HptR, it was hypothesized the regulons of CcpA and HptR might intersect. To determine if the regulatory domains of CcpA and HptRS overlap, ccpA was deleted in strains SA564 and SA564- ΔhptRS and growth, metabolic, proteomic, and transcriptional differences were assessed. As expected, CcpA represses hptS and hptR in a glucose dependent manner; however, upon CcpA derepression, the HptRS system functions as a transcriptional activator of metabolic genes within the CcpA regulon. Importantly, inactivation of ccpA and hptRS altered sensitivity to fosfomycin and ampicillin in the absence of exogenous glucose-6-phosphate, indicating that both CcpA and HptRS modulate antibiotic susceptibility

    Blood Leukocyte mRNA Expression for IL-10, IL-1Ra, and IL-8, but Not IL-6, Increases After Exercise

    Get PDF
    The primary purpose of this project was to study exercise-induced leukocyte cytokine mRNA expression. Changes in plasma cytokine levels and blood leukocyte mRNA expression for interleukin-6 (IL-6), IL-8, IL- 10, and IL-1 receptor antagonist (IL-1Ra) were measured in 12 athletes following 2 h of intensive cycling (64% Wattsmax) while ingesting a carbohydrate or placebo beverage (randomized and double blinded). Blood samples were collected 30 min preexercise and immediately and 1 h postexercise. Carbohydate compared with placebo ingestion attenuated exercise-induced changes in plasma cortisol (8.8% vs. 62%, respectively), epinephrine (–9.2% vs. 138%), IL-6 (10-fold vs. 40-fold), IL-10 (8.9-fold vs. 26-fold, and IL-1Ra (2.1-fold vs. 5.6-fold). Significant time effects were measured for blood leukocyte IL-8 (2.4-fold increase 1 h postexercise), IL-10 (2.7-fold increase), IL-1Ra (2.2-fold increase), and IL-6 (0.8-fold decrease) mRNA content, with no significant differences between Cho and Pla test conditions. In summary, gene expression for IL-8, IL-10, and IL-1Ra, but not IL-6, is increased in blood leukocytes taken from athletes following 2 h of intensive cycling and is not influenced by carbohydrate compared with placebo ingestion. mRNA expression was high enough to indicate a substantial contribution of blood leukocytes to plasma levels of IL-8, IL-10, and IL-1Ra during prolonged exercise

    Organocations in Zeolite Synthesis: Fused Bicyclo [l.m.0] Cations and the Discovery of Zeolite SSZ-48

    Get PDF
    A set of zeolite synthesis experiments is described where lattice substitution is varied in the context of the structure of particular structure-directing organocations (at times referred to as templates). In this particular series, the organocations are constructed as members of a fused bicyclo organonitrogen class of compounds, described as having ring construction [l.m.n], where n = 0. We show that these compounds can best be achieved from starting cyclic ketones that are converted to imines via a Beckman rearrangement reaction. A particular approach to the Beckmann reaction works best in our hands. In some instances isomeric organocations are made and separated. Often their use in zeolite synthesis led to different products. There is a high correlation for the space-filling details of the guest organocations and the type of crystalline host lattice developed in the synthesis. In one instance involving isomers of a decahydroquinoline derivative, a new zeolite, SSZ-48, is discovered and contains only one of the isomers. Characterization of the isomers and their use in the zeolites is followed by 13C MAS NMR analyses. Some details of the new zeolite are given and it is shown that a reasonable symmetry operation predicting a 14-ring zeolite could be generated under similar conditions to SSZ-48 (a 12-ring zeolite)

    Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39

    Get PDF
    Here, we report the synthesis and structure of three high-silica molecular sieves, SSZ-35, SSZ-36, and SSZ-39, that are prepared from a library of 37 different cyclic and polycyclic quaternized amine molecules that are used as structure-directing agents (SDAs). The size and shape of the quaternized amine molecules are purposely designed in order to obtain novel zeolite structures, and the synthesis of these molecules is presented. The selectivity for the three molecular sieve phases is found to depend on both the SDA and the degree of heteroatom lattice substitution of Al^(3+) or B^(3+) in the silicate framework. Molecular modeling is utilized to probe the effects of the nonbonded SDA/zeolite-framework interaction energy on the selectivity for the observed molecular sieve phase. The Rietveld refinement of the powder X-ray data confirms the structure of the SSZ-39 zeolite to be isomorphous with the aluminophosphate molecular sieve, SAPO-18 (AEI). The structure of SSZ-36 is found to possess a range of fault probabilities between the two-dimensional channel system, end-member polymorphs, ITQ-3 and RUB-13 (International Zeolite Association Codes ITE and RTH, respectively). The SSZ-35 structure is reported to contain a one-dimensional pore system possessing stacked cages circumscribed by alternating rings of 10 and 18 tetrahedral atoms (10- and 18-membered rings)

    Calibrating CHIME, A New Radio Interferometer to Probe Dark Energy

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 -- 800\,MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 -- 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements

    Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder

    Full text link
    A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37\,m long by 20\,m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of \sim100\,degrees by 1-2\,degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every \sim30\,cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800\,MHz, and directly sampled at 800\,MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation.Comment: 20 pages, 12 figures. submitted to Proc. SPIE, Astronomical Telescopes + Instrumentation (2014

    Indications for Absorbable Steroid-Eluting Sinus Implants: Viewpoint via the Delphi Method

    Get PDF
    Absorbable steroid-eluting sinus implants provide targeted corticosteroid release over a sustained period and are designed to prevent both undesirable adhesion formation and sinus ostia restenosis. Here, we highlight the key evidence of these implants to date and query a group of experts via a Delphi process on the indications and optimal timing for intraoperative or in-office placement of these implants. Six of a total of 12 statements reached consensus and were accepted. Overall, experts largely agree that intraoperative or in-office use of steroid-eluting stents could be considered for patients: (1) who are diabetic or intolerant of oral steroids, (2) undergoing extended frontal sinus surgery, and (3) with recurrent stenosis. Given the lack of expert consensus on other key statements, clinicians should carefully consider these treatment options on a case-by-case basis after shared decision-making
    corecore