5 research outputs found
Measurements of proton-induced reactions on ruthenium-96 in the ESR at GSI
8th International Conference on Nuclear Physics at Storage Rings Stori11, October 9-14, 2011 Laboratori Nazionale di Frascati, Italy.
Storage rings offer the possibility of measuring proton- and alpha-induced reactions in inverse kinematics. The combination of this approachwith a radioactive beamfacility allows, in principle, the determination of the respective cross sections for radioactive isotopes. Such data are highly desired for a better understanding of astrophysical nucleosynthesis processes like the p-process. A pioneering experiment has been performed at the Experimental Storage Ring (ESR) at GSI using a stable 96Ru beam at 9-11 AMeV and a hydrogen target. Monte-Carlo simulations of the experiment were made using the Geant4 code. In these simulations, the experimental setup is described in detail and all reaction channels can be investigated. Based on the Geant4 simulations, a prediction of the shape of different spectral components can be performed. A comparison of simulated predictions with the experimental results shows a good agreement and allows the extraction of the cross section
Advances in radiative capture studies at LUNA with a segmented BGO detector
Studies of charged-particle reactions for low-energy nuclear astrophysics require high sensitivity, which can be achieved by means of detection setups with high
efficiency and low backgrounds, to obtain precise measurements in the energy region of interest for stellar scenarios. High-efficiency total absorption spectroscopy is an established and powerful tool for studying radiative capture reactions, particularly if combined with the cosmic background reduction by several orders of magnitude obtained at the Laboratory for Underground Nuclear Astrophysics (LUNA). We present recent improvements in the detection setup with the Bismuth GermaniumOxide (BGO) detector at LUNA, aiming to reduce high-energy backgrounds and to increase the summing detection efficiency. The new design results in enhanced sensitivity of the BGO setup, as we demonstrate and discuss in the context of the
first direct measurement of the 65 keV resonance (Ex = 5672 keV) of the 17O(p, γ)18F reaction. Moreover, we show two applications of the BGO detector, which exploit its segmentation. In case of complex γ-ray cascades, e. g. the de-excitation of Ex = 5672 keV in 18F, the BGO segmentation allows to identify and suppress the beam induced background signals that mimic the sum peak of interest. We demonstrate
another new application for such a detector in form of in-situ activation measurementsof a reaction with β+ unstable product nuclei, e. g., the 14N(p, γ)15O reactio