2,234 research outputs found
Solar thermal decomposition of desalination reject brine for carbon dioxide removal and neutralisation of ocean acidity
Desalination plants could become net absorbers (rather than net emitters) of CO2. Thermal decomposition of salts in desalination reject brine can yield MgO which, added to the ocean, would take up CO2 through conversion to bicarbonate. The process proposed here comprises dewatering of brine followed by decomposition in a solar receiver using a heliostat field
Preparation of Cu-based bulk metallic glasses by suction casting
A series of Cu-Hf-Ti alloys prepared by rapid solidification of the melt and by copper mould casting were studied in the present work. Alloy ingots were prepared by arc-melting mixtures of pure metals in an argon atmosphere. An indication of the cooling rate obtained was determined using an Al-4.5 wt%Cu alloy. Cooling rates varied from 540 K/s for the centre section of a 4 mm die to 885 K/s for the outside wall section of the 2 mm die. The glass-forming ability, structure and thermal stability of Cu-Hf-Ti glassy alloys were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). Bulk glass formation was observed for the Cu64Hf36, Cu55Hf25Ti20 and Cu56Hf25Ti19 alloys, with critical diameters dc for a fully glassy structure of 1, 4 and 5 mm, respectively. The substitution of Hf by Ti increased the glassforming ability (GFA) and the thermal stability
Isothermal Organic Rankine Cycle (ORC) driving Reverse Osmosis (RO) desalination:experimental investigation and case study using R245fa working fluid
In many regions of the world, groundwater salinity contributes to the growing fresh water deficit. Desalination of saline water via reverse osmosis (RO) could be driven by Organic Rankine cycle (ORC) engines, exploiting readily available low-grade heat (e.g solar or waste heat). However, the specific energy consumption (SEC) of conventional ORC-RO systems is quite high, while the ORC efficiency is significantly low at low temperatures. To improve on the efficiency and SEC of brackish ground water desalination processes, a novel isothermal ORC driven batch RO desalination system was experimentally investigated, using R245fa working fluid. Results showed about a half of the energy requirement of conventional ORC-RO desalination systems. A case study indicated that the system can be potentially employed in recovering waste heat from a bakery facility to produce about 0.4 L of fresh water per kg of baked food
Dynamic simulation of a novel liquid desiccant air-conditioning system for greenhouse cooling and water recovery
We present dynamic, hour-by-hour modelling of a multi-stage nanofiltration regeneration system for liquid desiccant air-conditioning (NF-LDAC) of horticultural greenhouses in 17 locations covering four climate types. Four technologies are compared: fan ventilation, evaporative cooling (EvapC), conventional air-conditioning (AC), and NF-LDAC. The comparison is based on acceptable conditions for cultivation and coefficient of performance (COP). On average, fan ventilation and EvapC achieve acceptable conditions for 2 months per year, compared to 5.4 and 10.5 months for AC and NF-LDAC respectively. The highest COP value of 7.6 for NF-LDAC is reached at Colombo (Sri Lanka), followed by 5.3 at Mecca (Saudi Arabia). The permeate of the multi-stage regenerator can be recycled for irrigation, providing water savings. The highest water saving of 63% is at Mecca. These results are inferior but more realistic than those from an earlier idealised and steady-state model, which predicted a COP of 12.4 and water savings of 100% at Mecca. Nevertheless, in hot desert climates, NF-LDAC maintains acceptable conditions for year-round cultivation and saves water that is scarce in such climates. Future advances in nanofiltration membrane fabrication could increase the COP of NF-LDAC to 12.1 at Colombo and 7.4 at Mecca
The flow generated in a continuously stratified rotating fluid by the differential rotation of a plane horizontal disc
Results are presented from a modelling investigation into the response of a rotating, linearly stratified fluid to local forcing induced by a differentially rotating smooth, horizontal disc. Attention was directed at cases in which the disc forcing is relatively strong, with Rossby number ε = ω/2Ω of order 1 or greater; here ω and Ω are the disc and background rotation frequencies, respectively. The principal flow dynamics resulting in the mixing and deformation of the initially stable density distribution were identified as (i) shear-induced mixing due to the local increase in fluid vorticity above the disc and (ii) meridional circulations produced by Ekman processes and the constraint of the container sidewall. Laboratory experiments revealed the growth of a mixed layer adjacent to the disc and the subsequent development of layers within the mixed region. Furthermore, the experiments showed that, even at relatively large ε, Ekman processes associated with background rotation constituted the dominant mechanism controlling development and evolution of the primary interface between mixed and unmixed fluid regions. Theoretical, energy-based scalings are derived to describe the growth rate of the interfacial region for εgsimScript O(1) which are consistent with the ε → ∞ limit corresponding to the Ω = 0 case. These scalings are shown to describe well the development of the density field within the forced flow
The P Cygni supergiant [OMN2000] LS1 – implications for the star formation history of W51
Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200911980Aims. We investigate the nature of the massive star [OMN2000] LS1 and use these results to constrain the history of star formation within the host complex W51. Methods. We utilised a combination of near-IR spectroscopy and non-LTE model atmosphere analysis to derive the physical properties of [OMN2000] LS1 , and a combination of theoretical evolutionary calculations and Monte Carlo simulations to apply limits on the star formation history of W51. Results. We find the spectrum of [OMN2000] LS1 to be consistent with that of a P Cygni supergiant. With a temperature in the range of 13.2–13.7 kK and log( ) , it is significantly cooler, less luminous, and less massive than proposed by previous authors. The presence of such a star within W51 shows that star formation has been underway for at least 3 Myr, while the formation of massive O stars is still on going. The lack of a population of evolved red supergiants within the complex shows that the rate of formation of young massive clusters at ages 9 Myr was lower than currently observed. We find no evidence of internally triggered, sequential star formation within W51, and favour the suggestion that star formation has proceeded at multiple indepedent sites within the GMC. Along with other examples, such as the G305 and Carina star-forming regions, we suggest that W51 is a Galactic analogue of the ubiquitous star cluster complexes seen in external galaxies such as M51 and NGC2403.Peer reviewe
Design of a novel solar thermal collector using a multi-criteria decision-making methodology
Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design
Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process
This study of concentrating solar thermal power generation sets out to evaluate the main existing collection technologies using the framework of the Analytical Hierarchy Process (AHP). It encompasses parabolic troughs, heliostat fields, linear Fresnel reflectors, parabolic dishes, compound parabolic concentrators and linear Fresnel lenses. These technologies are compared based on technical, economic and environmental criteria. Within these three categories, numerous sub-criteria are identified; similarly sub-alternatives are considered for each technology. A literature review, thermodynamic calculations and an expert workshop have been used to arrive at quantitative and qualitative assessments. The methodology is applied principally to a case study in Gujarat in north-west India, though case studies based on the Sahara Desert, Southern Spain and California are included for comparison. A sensitivity analysis is carried out for Gujarat. The study concludes that the linear Fresnel lens with a secondary compound parabolic collector, or the parabolic dish reflector, is the preferred technology for north-west India
Code-division multiple-access in an optical fiber LAN with amplified bus topology: the SLIM bus
A novel optical fiber network with a bus topology and dark signaling (the SLIM bus) using optical code-division multiple-access (CDMA) is proposed. With a new design of delay line correlator the network is shown to eliminate optical beating noise and overcome the main limitations of incoherent optical CDMA in a star topology
- …