5,491 research outputs found
Benthic assemblages of the Anton Dohrn seamount (NE Atlantic): defining deep-sea biotopes to support habitat mapping and management efforts with a focus on vulnerable marine ecosystems
In 2009 the NW and SE flanks of Anton Dohrn Seamount were surveyed using multibeam echosounder and video ground-truthing to characterise megabenthic biological assemblages (biotopes) and assess those which clearly adhere to the definition of Vulnerable Marine Ecosystems, for use in habitat mapping. A combination of multivariate analysis of still imagery and video ground-truthing defined 13 comprehensive descriptions of biotopes that function as mapping units in an applied context. The data reveals that the NW and SE sides of Anton Dohrn Seamount (ADS) are topographically complex and harbour diverse biological assemblages, some of which agree with current definitions of ‘listed’ habitats of conservation concern. Ten of these biotopes could easily be considered Vulnerable Marine Ecosystems; three coral gardens, four cold-water coral reefs, two xenophyophore communities and one sponge dominated community, with remaining biotopes requiring more detailed assessment. Coral gardens were only found on positive geomorphic features, namely parasitic cones and radial ridges, found both sides of the seamount over a depth of 1311–1740 m. Two cold-water coral reefs (equivalent to summit reef) were mapped on the NW side of the seamount; Lophelia pertusa reef associated with the cliff top mounds at a depth of 747–791 m and Solenosmilia variabilis reef on a radial ridge at a depth of 1318-1351 m. Xenophyophore communities were mapped from both sides of the seamount at a depth of 1099–1770 m and were either associated with geomorphic features or were in close proximity (< 100 m) to them. The sponge dominated community was found on the steep escarpment either side of the seamount over at a depth of 854-1345 m. Multivariate diversity revealed the xenophyophore biotopes to be the least diverse, and a hard substratum biotope characterised by serpulids and the sessile holothurian, Psolus squamatus, as the most diverse
A laterally-fused N-heterocyclic carbene framework from polysubstituted aminoimidazo[5,1-b]oxazol-6-ium salts
A polysubstituted 3-aminoimidazo[5,1-b]oxazol-6-ium framework has been accessed from a new nitrenoid reagent by a two-step ynamide annulation and imidazolium ring-formation sequence. Metalation with Au(I), Cu(I) and Ir(I) at the C2 position provides an L-shaped NHC ligand scaffold that has been validated in gold-catalysed alkyne hydration and arylative cyclisation reactions
Physical properties of local star-forming analogues toz∼ 5 Lyman break galaxies
Intense, compact, star-forming galaxies are rare in the local Universe but ubiquitous at high redshift. We interpret the 0.1-22 μm spectral energy distributions (SED) of a sample of 180 galaxies at 0.05 < z < 0.25 selected for extremely high surface densities of inferred star formation in the ultraviolet. By comparison with well-established stellar population synthesis models we find that our sample comprises young (∼ 60 - 400 Myrs), moderate mass (∼6 × 109 M⊙) star-forming galaxies with little dust extinction (mean stellar continuum extinction Econt(B − V) ∼ 0.1) and find star formation rates of a few tens of Solar masses per year. We use our inferred masses to determine a mean specific star formation rate for this sample of ∼10−9 yr−1, and compare this to the specific star formation rates in distant Lyman break galaxies (LBGs), and in other low redshift populations. We conclude that our sample's characteristics overlap significantly with those of the z ∼ 5 LBG population, making ours the first local analogue population well tuned to match those high redshift galaxies. We consider implications for the origin and evolution of early galaxies
The rat retrosplenial cortex as a link for frontal functions: a lesion analysis
Cohorts of rats with excitotoxic retrosplenial cortex lesions were tested on four behavioural tasks sensitive to dysfunctions in prelimbic cortex, anterior cingulate cortex, or both. In this way the study tested whether retrosplenial cortex has nonspatial functions that reflect its anatomical interactions with these frontal cortical areas. In Experiment 1, retrosplenial cortex lesions had no apparent effect on a set-shifting digging task that taxed intradimensional and extradimensional attention, as well as reversal learning. Likewise, retrosplenial cortex lesions did not impair a strategy shift task in an automated chamber, which involved switching from visual-based to response-based discriminations and, again, included a reversal (Experiment 2). Indeed, there was evidence that the retrosplenial lesions aided the initial switch to response-based selection. No lesion deficit was found on an automated cost-benefit task that pitted size of reward against effort to achieve that reward (Experiment 3). Finally, while retrosplenial cortex lesions affected matching-to-place task in a T-maze, the profile of deficits differed from that associated with prelimbic cortex damage (Experiment 4). When the task was switched to a nonmatching design, retrosplenial cortex lesions had no apparent effect on performance. The results from the four experiments show that many frontal tasks do not require the retrosplenial cortex, highlighting the specificity of their functional interactions. The results show how retrosplenial cortex lesions spare those learning tasks in which there is no mismatch between the internal and external representations used to guide behavioural choice. In addition, these experiments further highlight the importance of the retrosplenial cortex in solving tasks with a spatial component
Adiabatic elimination in quantum stochastic models
We consider a physical system with a coupling to bosonic reservoirs via a
quantum stochastic differential equation. We study the limit of this model as
the coupling strength tends to infinity. We show that in this limit the
solution to the quantum stochastic differential equation converges strongly to
the solution of a limit quantum stochastic differential equation. In the
limiting dynamics the excited states are removed and the ground states couple
directly to the reservoirs.Comment: 17 pages, no figures, corrected mistake
Radio observations confirm young stellar populations in local analogues to z ~5 Lyman break galaxies
We present radio observations at 1.5 GHz of 32 local objects selected to reproduce the physical properties of z .5 star-forming galaxies. We also report non-detections of five such sources in the sub-millimetre. We find a radio-derived star formation rate which is typically half that derived from Hα emission for the same objects. These observations support previous indications that we are observing galaxies with a young dominant stellar population, which has not yet established a strong supernova-driven synchrotron continuum. We stress caution when applying star formation rate calibrations to stellar populations younger than 100 Myr. We calibrate the conversions
for younger galaxies, which are dominated by a thermal radio emission component.
We improve the size constraints for these sources, compared to previous unresolved ground-based optical observations. Their physical size limits indicate very high star formation rate surface densities, several orders of magnitude higher than the local galaxy
population. In typical nearby galaxies, this would imply the presence of galaxy-wide winds. Given the young stellar populations, it is unclear whether a mechanism exists in our sources that can deposit sufficient kinetic energy into the interstellar medium to drive such outflows
- …