48,658 research outputs found

    Freely-Decaying, Homogeneous Turbulence Generated by Multi-scale Grids

    Full text link
    We investigate wind tunnel turbulence generated by both conventional and multi-scale grids. Measurements were made in a tunnel which has a large test-section, so that possible side wall effects are very small and the length assures that the turbulence has time to settle down to a homogeneous shear-free state. The conventional and multi-scale grids were all designed to produce turbulence with the same integral scale, so that a direct comparison could be made between the different flows. Our primary finding is that the behavior of the turbulence behind our multi-scale grids is virtually identical to that behind the equivalent conventional grid. In particular, all flows exhibit a power-law decay of energy, u2∼t−nu^2 \sim t^{-n}, where nn is very close to the classical Saffman exponent of n=6/5n = 6/5. Moreover, all spectra exhibit classical Kolmogorov scaling, with the spectra collapsing on the integral scales at small kk, and on the Kolmogorov micro-scales at large kk. Our results are at odds with some other experiments performed on similar multi-scale grids, where significantly higher energy decay exponents and turbulence levels have been reported.Comment: 19 pages, 18 figure

    Segment-level evaluation of the simulated aggregation test: US corn and soybean exploratory experiment

    Get PDF
    An evaluation of the corn and soybean proportion-estimation accuracy and dot labeling accuracy of the Simulated Aggregation Test, U.S. Corn and Soybean Exploratory Experiment, is presented. These results are in turn compared with the corn and soybean proportion-estimation accuracy and dot labeling accuracy of the Classification Procedures Verification Test

    Spectral properties of non-local uniformly-elliptic operators

    Get PDF
    In this paper we consider the spectral properties of a class of non-local uniformly elliptic operators, which arise from the study of non-local uniformly elliptic partial differential equations. Such equations arise naturally in the study of a variety of physical and biological systems with examples ranging from Ohmic heating to population dynamics. The operators studied here are bounded perturbations of linear (local) differential operators, and the non-local perturbation is in the form of an integral term. We study the eigenvalues, the multiplicities of these eigenvalues, and the existence of corresponding positive eigenfunctions. It is shown here that the spectral properties of these non-local operators can differ considerably from those of their local counterpart. However, we show that under suitable hypotheses, there still exists a principal eigenvalue of these operators

    Analytical Solutions for the Nonlinear Longitudinal Drift Compression (Expansion) of Intense Charged Particle Beams

    Full text link
    To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using a one-dimensional warm-fluid model describing the longitudinal beam dynamics

    Spacecraft attitude sensor

    Get PDF
    A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners
    • …
    corecore