1,330 research outputs found

    Attention and the detection of signals.

    Get PDF

    1004-59 Vascular Acoustic Emissions During Angioplasty: Potential Role in Identification of Induced Dissection

    Get PDF
    A fundamental mechanism of balloon angioplasty (BA) is plaque rupture. Rupture leading to dissection, however, has been implicated as an underlyIng factor responsible for both acute and chronic adverse outcomes. Acoustic emissions (AE) — transient sound waves generated by microstructural alterations of a material subjected to mechanical stress — may provide a novel means of characterizing BA-induced tissue trauma. Using a novel acoustic sensor system, we examined the relationship between cumulative AE energy released by human arterial tissue during BA and the observed pathologic injury. Post-mortem human arterial specimens (19) were subjected to identical SA with simultaneous monitoring of intraluminal pressure and AE. Sound energy was integrated throughout the pressurization period to obtain an estimate of the cumulative AE energy released during dilatation. Postangioplasty inspection revealed a marked difference in AE energy released by specimens that experienced traumatic dissection vs. non-dissection dilatation:Sound energy released by vascular tissue undergoing balloon angioplasty discriminates dissection from non-dissection tissue trauma. Given the deleterious role that dissection can play in SA, this novel system may provide a means of improving procedural outcome

    CubeSat Active Thermal Management in Support of Cooled Electro-Optical Instrumentation for Advanced Atmospheric Observing Missions

    Get PDF
    The need for advanced cooled electro-optical instrumentation in remote observations of the atmosphere is well known and demonstrated by SABER on the TIMED mission. The relatively new use of small satellites in remote earth observing missions as, well as the challenges, are epitomized by the upcoming NOAA EON-IR 12U CubeSat missions. These advanced CubeSat missions, which hope to accomplish scientific objectives on the same scale as larger more traditional satellites, require advanced miniaturized cryocoolers and active methods for thermal management and power control. The active CryoCubeSat project (ACCS) is a demonstration of such a technology. Utilizing Ultrasonic Additive Manufacturing (UAM) techniques, a Mechanical Pumped Fluid Loop (MPFL), and miniature pumps and cryocoolers to create a closed loop fluid-based heat interchange system. The ACCS project creates a two-stage thermal control system targeting 6U CubeSat platforms. The first stage is composed of a miniature Ricor K508N cryocooler while the second is formed by a UAM fabricated heat exchanger MPFL system powered by a micro TCS M510 pump. The working fluid is exchanged between a built-in chassis heat exchanger and a deployable tracking radiator. This work details the theory design and testing of a relevant ground-based prototype and the analysis and modeling of the results as well as the development of a design tool to help in customized active thermal control designs for small satellites. Ultimately, the ACCS project hopes to enable a new generation of advanced CubeSat atmospheric observing missions

    Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

    Get PDF
    We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum jet and torus with the steeper diffuse nebula, and suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and HST images (Hester et al. 2002) can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of approximately 1264 km/s.Comment: 21 pages, 4 tables, 16 figure

    Discovery of the optical counterpart to the X-ray pulsar SAX J2103.5+4545

    Full text link
    We report optical and infrared photometric and spectroscopic observations that identify the counterpart to the 358.6-s X-ray transient pulsar SAX J2103.5+4545 with a moderately reddened V=14.2 B0Ve star. This identification makes SAX J2103.5+4545 the Be/X-ray binary with the shortest orbital period known, Porb= 12.7 days. The amount of absorption to the system has been estimated to be Av=4.2+-0.3, which for such an early-type star implies a distance of about 6.5 kpc. The optical spectra reveal major and rapid changes in the strength and shape of the Halpha line. The Halpha line was initially observed as a double peak profile with the ratio of the intensities of the blue over the red peak greater than one (V/R > 1). Two weeks later this ratio reversed (V/R< 1). Subsequently, in less than a month, the emission ceased and Halpha appeared in absorption. This fast spectral variability is interpreted within the viscous decretion disc model and demonstrates the significant role of the neutron star on the evolution of the circumstellar disc around the Be star. The implications of the small orbit and moderate eccentricity on the spin period of the neutron star are discussed.Comment: 9 pages, 6 figures, accepted for publication in A&
    • …
    corecore