248 research outputs found

    Visual recovery in a patient with total hyphema, neovascular glaucoma, long-standing retinal detachment and no light perception vision: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report the case of a patient with total hyphema, neovascular glaucoma, long-standing retinal detachment and no light perception vision, who regained counting fingers vision with complete regression of neovascularization following anterior chamber washout, intravitreal bevacizumab, pars plana vitrectomy, and silicone oil placement. This represents a rare case in which a patient with no light perception vision was able to regain functional vision.</p> <p>Case presentation</p> <p>A 63-year-old Caucasian man with a 55-year history of long-standing retinal detachment after trauma presented to our facility with pain and redness, a total hyphema, no light perception vision and an intraocular pressure of 60 mmHg (right eye). He had a history of diabetes mellitus and coronary artery disease. Following anterior chamber washout, he was found to have neovascular glaucoma, for which intravitreal bevacizumab was administered. After washout and intraocular pressure control, his visual acuity improved to light perception. He subsequently underwent vitrectomy, membrane peeling, endolaser and silicone oil placement to reattach his retina, and then a second retinal reattachment procedure. Following these procedures, he had visual recovery to counting fingers vision in his right eye at five metres, complete regression of neovascularization, and intraocular pressure of 10 to 12 mmHg on one antiglaucoma medication.</p> <p>Conclusion</p> <p>Functional vision can be regained despite long-standing retinal detachment.</p

    Towards an ideal biomaterial for vitreous replacement: historical overview and future trends

    Get PDF

    A Novel Approach To Detect Modified Cytosines In A Nanopore Sequencer

    No full text
    Epigenetic changes, such as DNA methylation, have been seen in various types of cancers, diseases, and neurological disorders. A common form of methylation occurs when a methyl group is added to the C-5 position of a cytosine, which is called 5-methyl-cyosine (5- mC). Hydroxymethylated is a type of methylation where 5mC is oxidized to 5-hydroxy-methyl- cytosine (5hmC), which has been linked to normal brain development. Current methods to sequence DNA methylation patterns (5-mC and 5-hmC) at a genome-wide level have several limitations, so there remains a need for a method to efficiently map DNA methylation. The state- of-the-art method for mapping DNA methylation uses bisulfite treatment, which shears DNA to small fragments, has a loss of genetic information due to unmethylated cytosines being converted to thymines, and has conversion error rates of about 1.5-1.6%. Moreover, this sequencing method takes substantial time and money as it requires a separate assay for genomic sequencing. Adaptations of this method have been made to distinguish 5-mC and 5-hmC, but they suffer from the same limitations. Nanopore sequencing can potentially overcome these challenges due to its ability to directly detect methylation and sequence long-reads. However, current nanopore sequencing techniques for methylation have high error rates. The scope of this thesis is multi- faceted, which involves implementing a methyl-cytosine and hydroxy-methyl-cytosine detection system by developing and benchmarking a new chemistry to modify cytosines to allow greater discrimination of unmodified and modified cytosines in a nanopore sequencer. The work of this thesis provides future researchers with a template to further increase the accuracy of detection between unmodified and modified cytosines in a nanopore sequencer by establishing an efficient, optimized protocol from the wet lab to the bioinformatic tools that were used

    A study of a hereditary cataract in the mouse.

    No full text
    • …
    corecore