2,973 research outputs found

    Matrix Product State representation for Slater Determinants and Configuration Interaction States

    Full text link
    Slater determinants are product states of filled quantum fermionic orbitals. When they are expressed in a configuration space basis chosen a priori, their entanglement is bound and controlled. This suggests that an exact representation of Slater determinants as finitely-correlated states is possible. In this paper we analyze this issue and provide an exact Matrix Product representation for Slater determinant states. We also argue possible meaningful extensions that embed more complex configuration interaction states into the description.Comment: 16 pages, 4 figures. Published in IJMPB, focus issue on "Classical vs. Quantum Correlations in Composite Systems

    Effective thermal dynamics following a quantum quench in a spin chain

    Full text link
    We study the nonequilibrium dynamics of the Quantum Ising Model following an abrupt quench of the transverse field. We focus on the on-site autocorrelation function of the order parameter, and extract the phase coherence time Ď„QĎ•\tau^{\phi}_Q from its asymptotic behavior. We show that the initial state determines Ď„QĎ•\tau^{\phi}_Q only through an effective temperature set by its energy and the final Hamiltonian. Moreover, we observe that the dependence of Ď„QĎ•\tau^{\phi}_Q on the effective temperature fairly agrees with that obtained in thermal equilibrium as a function of the equilibrium temperature.Comment: 4 pages, 4 figures. Published versio

    How to exploit abstract user interfaces in MARIA

    Get PDF
    In model-based approaches, Abstract User Interfaces enable the specification of interactive applications in a modality-independent manner, which is then often used for authoring multi-device interactive applications. In this paper we discuss two solutions for exploiting abstract UIs. We consider the MARIA language for such comparison. The overall aim is to improve the efficiency of the model-based process, thus making it easier to adopt and apply

    Foraging Behaviour and Individuality in the Common Wasp (Vespula vulgaris)

    No full text
    The extreme ecological success of insect societies is frequently attributed to the division of labour within their colonies (Chittka & Muller, 2009; Holldobler & Wilson, 2009; E. Wilson & Hölldobler, 2005). Yet, we are far from understanding the causes and consequences of division of labour, implying workers’ specialization (Chittka & Muller, 2009; Dornhaus, 2008). Moreover, little studied is the behaviour of individual workers (Jeanson & Weidenmüller, 2013). Social wasps (Hymenoptera: Vespidae) have received less attention than social bees and ants, and our knowledge of basic aspect of their ecology is still poor (Jeanne, 1991; Greene, 1991). With my thesis, I aimed to contribute to a better understanding of the common wasp (Vespula vulgaris) foraging ecology and organization of labour. With a particular attention to their foraging behaviour, I investigated the inter-individual variability among wasp workers and their cooperation. My thesis shows evidence of information sharing and co-ordination in V. vulgaris foragers’ activity. In fact, the discovery and choice of resources by wasp foragers was assisted by information provided by experienced nestmates (Chapter 2). When resources known to portion of the workforce became newly available, the foraging effort of the whole colony increased. My observations of common wasps are hence consistent with foraging activation mechanisms and suggest piloting (in which one individual leads one or more nestmates to a resource) as a possible foraging recruitment mechanism in social wasps. I found huge variation in lifetime activity, task performance, and survival among common wasp workers (Chapter 3). Some individuals specialized on alternative foraging tasks over their lifetime, and a minority individuals performed a disproportionately high number of foraging trips (elitism). Foragers appeared to become more successful with age, accomplishing more trips and carrying heavier fluid loads. Compared to smaller nestmates, larger wasps contributed more to the colony foraging economies. High mortality was associated with the beginning of the foraging activity, relative to lower mortality in more experienced workers. I evaluated the performance of common wasp workers within the same insect colony, and found empirical support for the hypothesis that specialist foragers are more efficient than generalists (Chapter 4). In fact, V. vulgaris behavioural specialists performed more trips per foraging day and their trips tended to be shorter. Despite their more intense foraging effort, specialists lived longer than generalists. I investigated the intra-colonial variation in the sting extension response (SER) of common wasps, measured as a proxy for individual aggressiveness (Chapter 5). I found that wasps vary greatly in their SER and that individuals change during their life. Aggressive individuals tended to become more docile, while docile individuals more aggressive. Older wasps tended to be more aggressive. Wasp size was not significantly related to the SER. Wasp foragers had a less pronounced sting extension than individuals previously involved in nest defence. For the same individual, the aggressive response was proportional to the intensity of the negative stimulus

    How to exploit abstract user interfaces in MARIA

    Get PDF
    In model-based approaches, Abstract User Interfaces enable the specification of interactive applications in a modality-independent manner, which is then often used for authoring multi-device interactive applications. In this paper we discuss two solutions for exploiting abstract UIs. We consider the MARIA language for such comparison. The overall aim is to improve the efficiency of the model-based process, thus making it easier to adopt and apply

    A set of languages for context-aware adaptation

    Get PDF
    The creation of service front ends able to adapt to the context of use involves a wide spectrum of aspects to be considered by developers and designers. A context-aware adaptation enabled application needs a simultaneous management of very different application functionalities, such as the context sensing, identifying different given situations, determining the appropriate reactions and the execution of the adaptation effects. In this paper we describe an adaptation architecture for tackling this complexity and we present a set of languages that address the definition of the various aspects of an adaptive application

    Adiabatic dynamics in a spin-1 chain with uniaxial single-spin anisotropy

    Full text link
    We study the adiabatic quantum dynamics of an anisotropic spin-1 XY chain across a second order quantum phase transition. The system is driven out of equilibrium by performing a quench on the uniaxial single-spin anisotropy, that is supposed to vary linearly in time. We show that, for sufficiently large system sizes, the excess energy after the quench admits a non trivial scaling behavior that is not predictable by standard Kibble-Zurek arguments for isolated critical points or extended critical regions. This emerges from a competing effect of many accessible low-lying excited states, inside the whole continuous line of critical points.Comment: 17 pages, 8 figures, published versio

    Long time dynamics following a quench in an integrable quantum spin chain: local versus non-local operators and effective thermal behavior

    Full text link
    We study the dynamics of the quantum Ising chain following a zero-temperature quench of the transverse field strength. Focusing on the behavior of two-point spin correlation functions, we show that the correlators of the order parameter display an effective asymptotic thermal behavior, i.e., they decay exponentially to zero, with a phase coherence rate and a correlation length dictated by the equilibrium law with an effective temperature set by the energy of the initial state. On the contrary, the two-point correlation functions of the transverse magnetization or the density-of-kinks operator decay as a power-law and do not exhibit thermal behavior. We argue that the different behavior is linked to the locality of the corresponding operator with respect to the quasi-particles of the model: non-local operators, such as the order parameter, behave thermally, while local ones do not. We study which features of the two-point correlators are a consequence of the integrability of the model by analizing their robustness with respect to a sufficiently strong integrability-breaking term.Comment: 18 pages, 11 figures, published version. Extensive changes, one author adde
    • …
    corecore