5 research outputs found

    Suramin-Induced Neurotoxicity: Preclinical Models and Neuroprotective Strategies

    No full text
    Suramin is a trypan blue analogon originally developed to treat protozoan infections, which was found to have diverse antitumor effects. One of the most severe side effects in clinical trials was the development of a peripheral sensory-motor polyneuropathy. In this study, we aimed to investigate suramin-induced neuropathy with a focus on calcium (Ca2+) homeostasis as a potential pathomechanism. Adult C57Bl/6 mice treated with a single injection of 250 mg/kg bodyweight suramin developed locomotor and sensory deficits, which were confirmed by electrophysiological measurements showing a predominantly sensory axonal-demyelinating polyneuropathy. In a next step, we used cultured dorsal root ganglia neurons (DRGN) as an in vitro cell model to further investigate underlying pathomechanisms. Cell viability of DRGN was significantly decreased after 24-hour suramin treatment with a calculated IC50 of 283 ”M. We detected a suramin-induced Ca2+ influx into DRGN from the extracellular space, which could be reduced with the voltage-gated calcium channel (VGCC) inhibitor nimodipine. Co-incubation of suramin and nimodipine partially improved cell viability of DRGN after suramin exposure. In summary, we describe suramin-induced neurotoxic effects on DRGN as well as potentially neuroprotective agents targeting intracellular Ca2+ dyshomeostasis

    Suramin-induced neurotoxicity in-vitro

    No full text
    Einleitung: Die Chemotherapie-induzierte Polyneuropathie (CIPN) ist eine der hĂ€ufigsten unerwĂŒnschten Arzneimittelwirkungen unter Chemotherapie bei Tumorpatienten. Bisher sind die jeweiligen Pathomechanismen unzureichend geklĂ€rt. Folglich existieren keine adĂ€quaten TherapieansĂ€tze. Betroffene Patienten leiden unter einer eingeschrĂ€nkten LebensqualitĂ€t und können teilweise aufgrund dieser dosislimitierenden Nebenwirkung nicht optimal behandelt werden. Es sind verschiedene Substanzen bekannt, die das Auftreten einer CIPN bewirken können. Interessanterweise haben Studien gezeigt, dass der neurotoxische Effekt der Chemotherapeutika Salynomycin und Paclitaxel mit dem Auftreten einer Calciumdyshomöostase zusammenhĂ€ngt. Bemerkenswert ist, dass auch die NeurotoxizitĂ€t Suramins mit einer gestörten Calciumhomöostase in Verbindung gebracht wurde. Suramin ist ein seit 1916 bekanntes Antiprotozoikum, das in tierexperimentellen und klinischen Studien auch im Rahmen verschiedener TumorentitĂ€ten eingesetzt wurde. Insgesamt wurden zahlreiche Wirkmechanismen dieser Substanz beschrieben. Außerdem verursacht Suramin zahlreiche Nebenwirkungen. HĂ€ufig stellt eine zumeist periphere, axonale und sensomotorische Polyneuropathie einen dosislimitierenden Faktor dar. Gegenstand dieser Arbeit war es, den zugrundeliegenden Pathomechanismus der NeurotoxizitĂ€t Suramins zu untersuchen, um das VerstĂ€ndnis der Pathophysiologie der CIPN allgemein zu erweitern und spezifische therapeutische Ansatzmöglichkeiten zu beleuchten. Methodik: FĂŒr die Untersuchungen wurden primĂ€re Spinalganglienzellkulturen aus Ratten-Neonaten (P 0-3) gewonnen. Zur Messung des intrazellulĂ€ren Calciumgehalts erfolgten Calcium-Imaging Experimente unter Verwendung des Fluoreszenzfarbstoffs Fura-2. Des Weiteren untersuchten wir, unter Verwendung spezifischer Inhibitoren, die Bedeutung verschiedener spannungsabhĂ€ngiger Calcium (VGCC)- sowie Transient- Rezeptor-Potential-(TRP) KanĂ€le im Rahmen der Suramin-vermittelten NeurotoxizitĂ€t. Die Evaluation der ZellvitalitĂ€t erfolgte mittels MTT-Assay. Ergebnisse: Wir konnten zeigen, dass Suramin zu einem Einstrom von extrazellulĂ€rem Calcium in das Cytosol von Spinalganglienzellen fĂŒhrt. Der L-Typ VGCC-Inhibitor Nimodipin konnte diesen Calciumeinstrom signifikant vermindern und die zellulĂ€re VitalitĂ€t signifikant steigern. Allerdings wurde die toxische und Calcium-induzierende Wirkung Suramins nicht vollstĂ€ndig durch Nimodipin antagonisiert. Die Inhibition des TRPV4 Kanals zeigte diesbezĂŒglich uneindeutige Ergebnisse. DarĂŒber hinaus traten experimentelle Interaktionen Suramins mit Fluoreszenz und Lumineszenz-Assays auf. Dies fĂŒhrten wir am ehesten auf eine Interaktion mit den jeweiligen Luminophoren zurĂŒck. Außerdem zeigte sich unter Suramin eine verminderte zellulĂ€re AdhĂ€sion. Unter BerĂŒcksichtigung der Literatur machten wir eine Interaktion mit extrazellulĂ€ren Matrixproteinen hierfĂŒr verantwortlich. Schlussfolgerung: Mit der vorliegenden Arbeit konnten wir die Bedeutung der Calciumhomöostase im Rahmen der pathophysiologischen VorgĂ€nge der CIPN allgemein verdeutlichen. Im Speziellen ließen sich membranstĂ€ndige IonenkanĂ€le als Vermittler des Suramin- induzierten Calciumeinstroms und der dadurch bedingten NeurotoxizitĂ€t identifizieren. Jedoch wird insgesamt deutlich, dass Suramin unspezifische Bindungseigenschaften besitzt und so pleiotrope Effekte auf verschiedenste Zielstrukturen ausĂŒbt. Dies bedingt eine Ă€ußerst komplexe Handhabung dieser Substanz sowohl im klinischen als auch im experimentellen Einsatz. Die dargestellten Interaktionen sollten insbesondere fĂŒr die weitere experimentelle Verwendung Suramins genauer untersucht werden.Introduction: Chemotherapy induced polyneuropathy (CIPN) is one of the most frequent side effects of chemotherapy treated tumor patients. Pathomechanisms and consequently therapeutic strategies remain to be elucidated. Affected patients suffer from a reduced quality of life and might not be treated with the optimal treatment regimen because of this dose limiting side effect. Several chemotherapeutic compounds are known to induce CIPN. Intriguingly studies have shown that the neurotoxic effect of Salinomycin and Paclitaxel is linked to a disturbance of cellular calcium homeostasis. In this context, it is of interest that Suramin induced neurotoxicity was proposed to be linked to calcium dyshomeostasis as well. The antiprotozoic agent Suramin is known since 1916. Suramin was also shown to have diverse antitumor activities. It also causes various side effects. One of the most frequent dose limiting side effects being a predominantly axonal and peripheral sensorimotor neuropathy. We investigated the pathomechanism of Suramin neurotoxicity in order to improve the understanding of CIPN pathophysiology in general and to elucidate specific therapeutic targets. Methods: We used primary dorsal-root-ganglion cell (DRGC) cultures from rat neonates (P 0-3). Intracellular calcium levels were measured via Calcium-Imaging using the fluorescent dye Fura-2. Moreover, we investigated the impact of voltage gated calcium channels (VGCC) and Transient-Receptor-Potential-(TRP) channels on Suramin neurotoxicity using the MTT cell-viability assay. Results: We were able to show that Suramin induces an influx of extracellular calcium into the cytosol of DRGCs. The L-type VGCC inhibitor Nimodipine reduced Suramin induced calcium influx significantly and improved viability of Suramin treated cells. Nevertheless, Nimodipine could not reverse Suramin induced impairment of cell viability and calcium influx completely. The inhibition of the TRPV4 channel showed ambiguous results. We also observed interactions of Suramin with fluorescence- and luminescence assays and hypothesized a direct interaction of Suramin with luminophores. Moreover, Suramin impaired cellular adhesion. With reference to the published literature we linked this phenomenon to interactions of Suramin with extracellular matrix proteins such as Laminin. Conclusion: Altogether our experiments emphasize the relevance of a calciumdyshomeostasis in the pathophysiology of CIPN in general. Furthermore, we could identify ion channels in the plasma membrane as potential mediators of Suramin induced calcium influx and subsequent neurotoxicity. Nevertheless, it becomes clear that Suramin possesses unspecific binding properties which result in pleiotropic effects of this substance. This causes a very complex handling of Suramin in both experimental and clinical uses. For further experimental use of Suramin the described interactions should be investigated in more detail

    Suramin-Induced Neurotoxicity: Preclinical Models and Neuroprotective Strategies

    No full text
    Suramin is a trypan blue analogon originally developed to treat protozoan infections, which was found to have diverse antitumor effects. One of the most severe side effects in clinical trials was the development of a peripheral sensory-motor polyneuropathy. In this study, we aimed to investigate suramin-induced neuropathy with a focus on calcium (Ca2+) homeostasis as a potential pathomechanism. Adult C57Bl/6 mice treated with a single injection of 250 mg/kg bodyweight suramin developed locomotor and sensory deficits, which were confirmed by electrophysiological measurements showing a predominantly sensory axonal-demyelinating polyneuropathy. In a next step, we used cultured dorsal root ganglia neurons (DRGN) as an in vitro cell model to further investigate underlying pathomechanisms. Cell viability of DRGN was significantly decreased after 24-hour suramin treatment with a calculated IC50 of 283 ”M. We detected a suramin-induced Ca2+ influx into DRGN from the extracellular space, which could be reduced with the voltage-gated calcium channel (VGCC) inhibitor nimodipine. Co-incubation of suramin and nimodipine partially improved cell viability of DRGN after suramin exposure. In summary, we describe suramin-induced neurotoxic effects on DRGN as well as potentially neuroprotective agents targeting intracellular Ca2+ dyshomeostasis

    The Nuclear Receptor Superfamily

    No full text
    corecore