106 research outputs found

    Neuroprotection in an Experimental Model of Multiple Sclerosis via Opening of Big Conductance, Calcium-Activated Potassium Channels

    Get PDF
    Big conductance calcium-activated (BK) channel openers can inhibit pathologically driven neural hyperactivity to control symptoms via hyperpolarizing signals to limit neural excitability. We hypothesized that BK channel openers would be neuroprotective during neuroinflammatory, autoimmune disease. The neurodegenerative disease was induced in a mouse experimental autoimmune encephalomyelitis model with translational value to detect neuroprotection in multiple sclerosis. Following the treatment with the BK channel openers, BMS-204253 and VSN16R, neuroprotection was assessed using subjective and objective clinical outcomes and by quantitating spinal nerve content. Treatment with BMS-204253 and VSN16R did not inhibit the development of relapsing autoimmunity, consistent with minimal channel expression via immune cells, nor did it change leukocyte levels in rodents or humans. However, it inhibited the accumulation of nerve loss and disability as a consequence of autoimmunity. Therefore, in addition to symptom control, BK channel openers have the potential to save nerves from excitotoxic damage and could be useful as either stand-alone neuroprotective agents or as add-ons to current disease-modifying treatments that block relapsing MS but do not have any direct neuroprotective activity

    The Cannabinoid-Like Compound, VSN16R, Acts on Large Conductance, Ca2+-Activated K+ Channels to Modulate Hippocampal CA1 Pyramidal Neuron Firing

    Get PDF
    Large conductance, Ca2+-activated K+ (BKCa) channels are widely expressed in the central nervous system, where they regulate action potential duration, firing frequency and consequential neurotransmitter release. Moreover, drug action on, mutations to, or changes in expression levels of BKCa can modulate neuronal hyperexcitability. Amongst other potential mechanisms of action, cannabinoid compounds have recently been reported to activate BKCa channels. Here, we examined the effects of the cannabinoid-like compound (R,Z)-3-(6-(dimethylamino)-6-oxohex-1-en-1-yl)-N-(1-hydroxypropan-2-yl) benzamide (VSN16R) at CA1 pyramidal neurons in hippocampal ex vivo brain slices using current clamp electrophysiology. We also investigated effects of the BKCa channel blockers iberiotoxin (IBTX) and the novel 7-pra-martentoxin (7-Pra-MarTx) on VSN16R action. VSN16R (100 μM) increased first and second fast after-hyperpolarization (fAHP) amplitude, decreased first and second inter spike interval (ISI) and shortened first action potential (AP) width under high frequency stimulation protocols in mouse hippocampal pyramidal neurons. IBTX (100 nM) decreased first fAHP amplitude, increased second ISI and broadened first and second AP width under high frequency stimulation protocols; IBTX also broadened first and second AP width under low frequency stimulation protocols. IBTX blocked effects of VSN16R on fAHP amplitude and ISI. 7-Pra-MarTx (100 nM) had no significant effects on fAHP amplitude and ISI but, unlike IBTX, shortened first and second AP width under high frequency stimulation protocols; 7-Pra-MarTx also shortened second AP width under low frequency stimulation protocols. However, in the presence of 7-Pra-MarTx, VSN16R retained some effects on AP waveform under high frequency stimulation protocols; moreover, VSN16R effects were revealed under low frequency stimulation protocols. These findings demonstrate that VSN16R has effects in native hippocampal neurons consistent with its causing an increase in initial firing frequency via activation of IBTX-sensitive BKCa channels. The differential pharmacological effects described suggest that VSN16R may differentially target BKCa channel subtypes

    Critical Care Network in the State of Qatar

    Get PDF
    © 2019 Hijjeh, Al Shaikh, Alinier, Selwood, Malmstrom, Hassan, licensee HBKU Press. This is an open access article distributed under the terms of the Creative Commons Attribution license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.Peer reviewe

    Mitochondrial targeting of cyclosporin A enables selective inhibition of cyclophilin-D and enhanced cytoprotection after glucose and oxygen deprivation

    Get PDF
    CsA (cyclosporin A) is a hydrophobic undecapeptide that inhibits CyPs (cyclophilins), a family of PPIases (peptidylprolyl cis–trans isomerases). In some experimental models, CsA offers partial protection against lethal cell injury brought about by transient ischaemia; this is believed to reflect inhibition of CyP-D, a mitochondrial isoform that facilitates formation of the permeability transition pore in the mitochondrial inner membrane. To evaluate this further, we have targeted CsA to mitochondria so that it becomes selective for CyP-D in cells. This was achieved by conjugating the inhibitor to the lipophilic triphenylphosphonium cation, enabling its accumulation in mitochondria due to the inner membrane potential. In a cell-free system and in B50 neuroblastoma cells the novel reagent (but not CsA itself) preferentially inhibited CyP-D over extramitochondrial CyP-A. In hippocampal neurons, mitochondrial targeting markedly enhanced the capacity of CsA to prevent cell necrosis brought about by oxygen and glucose deprivation, but largely abolished its capacity to inhibit glutamate-induced cell death. It is concluded that CyP-D has a major pathogenic role in ‘energy failure’, but not in glutamate excitotoxicity, where cytoprotection primarily reflects CsA interaction with extramitochondrial CyPs and calcineurin. Moreover, the therapeutic potential of CsA against ischaemia/reperfusion injuries not involving glutamate may be improved by mitochondrial targeting

    HIV-1 capsid is involved in post-nuclear entry steps

    Get PDF
    BACKGROUND: HIV-1 capsid influences viral uncoating and nuclear import. Some capsid is detected in the nucleus but it is unclear if it has any function. We reported that the antibiotic Coumermycin-A1 (C-A1) inhibits HIV-1 integration and that a capsid mutation confers resistance to C-A1, suggesting that capsid might affect post-nuclear entry steps. RESULTS: Here we report that C-A1 inhibits HIV-1 integration in a capsid-dependent way. Using molecular docking, we identify an extended binding pocket delimited by two adjacent capsid monomers where C-A1 is predicted to bind. Isothermal titration calorimetry confirmed that C-A1 binds to hexameric capsid. Cyclosporine washout assays in Jurkat CD4+ T cells expressing engineered human TRIMCyp showed that C-A1 causes faster and greater escape from TRIMCyp restriction. Sub-cellular fractionation showed that small amounts of capsid accumulated in the nuclei of infected cells and C-A1 reduced the nuclear capsid. A105S and N74D capsid mutant viruses did not accumulate capsid in the nucleus, irrespective of C-A1 treatment. Depletion of Nup153, a nucleoporin located at the nuclear side of the nuclear pore that binds to HIV-1 capsid, made the virus less susceptible to TRIMCyp restriction, suggesting that Nup153 may help maintain some integrity of the viral core in the nucleus. Furthermore C-A1 increased binding of CPSF6, a nuclear protein, to capsid. CONCLUSIONS: Our results indicate that capsid is involved in post-nuclear entry steps preceding integration

    Small Molecule Inhibitors of the Neuropilin-1 Vascular Endothelial Growth Factor A (VEGF-A) Interaction†

    Get PDF
    We report the molecular design and synthesis of EG00229, 2, the first small molecule ligand for the VEGF-A receptor neuropilin 1 (NRP1) and the structural characterization of NRP1-ligand complexes by NMR spectroscopy and X-ray crystallography. Mutagenesis studies localized VEGF-A binding in the NRP1 b1 domain and a peptide fragment of VEGF-A was shown to bind at the same site by NMR, providing the basis for small molecule design. Compound 2 demonstrated inhibition of VEGF-A binding to NRP1 and attenuated VEGFR2 phosphorylation in endothelial cells. Inhibition of migration of endothelial cells was also observed. The viability of A549 lung carcinoma cells was reduced by 2, and it increased the potency of the cytotoxic agents paclitaxel and 5-fluorouracil when given in combination. These studies provide the basis for design of specific small molecule inhibitors of ligand binding to NRP1
    corecore