28 research outputs found

    Perceptual memory drives learning of retinotopic biases for bistable stimuli.

    Get PDF
    The visual system exploits past experience at multiple timescales to resolve perceptual ambiguity in the retinal image. For example, perception of a bistable stimulus can be biased toward one interpretation over another when preceded by a brief presentation of a disambiguated version of the stimulus (positive priming) or through intermittent presentations of the ambiguous stimulus (stabilization). Similarly, prior presentations of unambiguous stimuli can be used to explicitly "train" a long-lasting association between a percept and a retinal location (perceptual association). These phenonema have typically been regarded as independent processes, with short-term biases attributed to perceptual memory and longer-term biases described as associative learning. Here we tested for interactions between these two forms of experience-dependent perceptual bias and demonstrate that short-term processes strongly influence long-term outcomes. We first demonstrate that the establishment of long-term perceptual contingencies does not require explicit training by unambiguous stimuli, but can arise spontaneously during the periodic presentation of brief, ambiguous stimuli. Using rotating Necker cube stimuli, we observed enduring, retinotopically specific perceptual biases that were expressed from the outset and remained stable for up to 40 min, consistent with the known phenomenon of perceptual stabilization. Further, bias was undiminished after a break period of 5 min, but was readily reset by interposed periods of continuous, as opposed to periodic, ambiguous presentation. Taken together, the results demonstrate that perceptual biases can arise naturally and may principally reflect the brain's tendency to favor recent perceptual interpretation at a given retinal location. Further, they suggest that an association between retinal location and perceptual state, rather than a physical stimulus, is sufficient to generate long-term biases in perceptual organization

    Insect immunity: from pattern recognition to symbiont-mediated host defense

    Get PDF
    The Jacques Monod conference "Insect Immunity in Action: From Fundamental Mechanisms of Host Defense to Resistance Against Infections in Nature," organized by Ulrich Theopold (Stockholm University, Sweden) and Dominique Ferrandon (CNRS, France), was held in May 2009 in Aussois, France. Here, we review key topics and concepts that were presented and highlight emerging trends in the field of insect immunity

    Negative Regulation by Amidase PGRPs Shapes the Drosophila Antibacterial Response and Protects the Fly from Innocuous Infection

    Get PDF
    Peptidoglycan recognition proteins (PGRPs) are key regulators of insect immune responses. In addition to recognition PGRPs, which activate the Toll and Imd pathways, the Drosophila genome encodes six catalytic PGRPs with the capacity to scavenge peptidoglycan. We have performed a systematic analysis of catalytic PGRP function using deletions, separately and in combination. Our findings support the role of PGRP-LB as a negative regulator of the Imd pathway and brought to light a synergy of PGRP-SCs with PGRP-LB in the systemic response. Flies lacking all six catalytic PGRPs were still viable but exhibited deleterious immune responses to innocuous gut infections. Together with recent studies on mammalian PGRPs, our study uncovers a conserved role for PGRPs in gut homeostasis. Analysis of the immune phenotype of flies lacking all catalytic PGRPs and the Imd regulator Pirk reveals that the Imd-mediated immune response is highly constrained by the existence of multiple negative feedbacks

    Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues.

    Get PDF
    The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations.This article is part of the themed issue 'Vision in our three-dimensional world'.This research was supported by a Wellcome Trust-NIH PhD studentship (WT091467MA) to A.P.M., a Wellcome Trust Fellowship (095183/Z/10/Z) to A.E.W., and grants from the MRC and the Stroke Association to G.W.H. D.A.L. and A.P.M. are supported by the Intramural program of the National Institutes of Healt

    Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Get PDF
    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila

    Drosophila Immunity: Analysis of PGRP-SB1 Expression, Enzymatic Activity and Function

    Get PDF
    Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed

    Similar requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in diverse cell types

    Get PDF
    AbstractDuring animal development, a complex of Par3, Par6 and atypical protein kinase C (aPKC) plays a central role in cell polarisation. The small G protein Cdc42 also functions in cell polarity and has been shown in some cases to act by regulating the Par3 complex. However, it is not yet known whether Cdc42 and the Par3 complex widely function together in development or whether they have independent functions. For example, many studies have implicated Cdc42 in cell migrations, but the Par3 complex has only been little studied, with conflicting results. Here we examine the requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in a range of different developmental events. We found similar requirements in all tissues examined, including polarised growth of vulval precursors and seam cells, migrations of neuroblasts and axons, and the development of the somatic gonad. We also propose a novel role for primordial germ cells in mediating coalescence of the Caenorhabditis elegans gonad. These results indicate that CDC-42 and the PAR-3/PAR-6/aPKC complex function together in diverse cell types

    Agricultural atmospheric ammonia: identification & assessment of potential impacts

    No full text
    This Irish Wildlife Manual aims to summarise: The effects of emissions of ammonia from intensive agricultural sources and its deposition on biodiversity. The regulatory requirements for the assessment of these effects and the indicators of adverse effects including physical observations and theoretical limits used in modelling assessment. The approach recommended by the Irish EPA and approaches used in various European Countries that are currently used to assess and report on the potential effects of emissions of ammonia from agricultural development. A framework for high-level review of dispersion modelling assessment intended for non-expert users of dispersion models that details a non-technical basis to consider whether the critical components of a dispersion modelling study meet the requirements of dispersion modelling guidance issued by the Irish EPA.National Parks & Wildlife Service (NPWS

    Data from: Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues

    No full text
    The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations

    Bistable task behavioural data

    No full text
    Percept duration data (in seconds) for all subjects (patients and controls) on the bistable tasks is provided in .csv spreadsheet and .mat formats. The accompanying example Matlab script loads the duration data and calculates descriptive statistics for the rotating sphere task, which are plotted similarly to Figures 5 and 6 of the paper
    corecore