30 research outputs found

    Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials

    Full text link
    Qubits based on ions trapped in linear radio-frequency traps form a successful platform for quantum computing, due to their high fidelity of operations, all-to-all connectivity and degree of local control. In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register. However, in practice there are two main issues associated with long trapped-ion crystals, that stem from the 'softening' of their modes of motion, upon scaling up: high heating rates of the ions' motion, and a dense motional spectrum; both impede the performance of high-fidelity qubit operations. Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals that overcomes these issues. Our method relies on dynamically-operated optical potentials, that instantaneously segment the ion-crystal into cells of a manageable size. We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells. The ability to reconfigure the optical potentials guarantees connectivity across the full ion-crystal, and also enables efficient mid-circuit measurements. We study the implementation of large-scale parallel multi-qubit entangling gates that operate simultaneously on all cells, and present a protocol to compensate for crosstalk errors, enabling full-scale usage of an extensively large register. We illustrate that this architecture is advantageous both for fault-tolerant digital quantum computation and for analog quantum simulations

    Glucose-6-phosphate dehydrogenase deficiency and long-term risk of immune-related disorders

    Get PDF
    IntroductionGlucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked enzymatic disorder that is particularly prevalent in Africa, Asia, and the Middle East. This study aimed to assess the long-term health risks associated with G6PD deficiency.MethodsA retrospective cohort study was conducted using data from a national healthcare provider in Israel (Leumit Health Services). A total of 7,473 G6PD-deficient individuals were matched with 29,892 control subjects in a 1:4 ratio, based on age, gender, socioeconomic status, and ethnic groups. The exposure of interest was recorded G6PD diagnosis or positive G6PD diagnostic test. The main outcomes and measures included rates of infectious diseases, allergic conditions, and autoimmune disorders between 2002 and 2022.ResultsSignificantly increased rates were observed for autoimmune disorders, infectious diseases, and allergic conditions in G6PD-deficient individuals compared to the control group. Specifically, notable increases were observed for rheumatoid arthritis (odds ratio [OR] 2.41, p<0.001), systemic lupus erythematosus (OR 4.56, p<0.001), scleroderma (OR 6.87, p<0.001), pernicious anemia (OR 18.70, p<0.001), fibromyalgia (OR 1.98, p<0.001), Graves’ disease (OR 1.46, p=0.001), and Hashimoto’s thyroiditis (OR 1.26, p=0.001). These findings were supported by elevated rates of positive autoimmune serology and higher utilization of medications commonly used to treat autoimmune conditions in the G6PD-deficient group.DiscussionIn conclusion, individuals with G6PD deficiency are at a higher risk of developing autoimmune disorders, infectious diseases, and allergic conditions. This large-scale observational study provides valuable insights into the comprehensive association between G6PD deficiency and infectious and immune-related diseases. The findings emphasize the importance of considering G6PD deficiency as a potential risk factor in clinical practice and further research is warranted to better understand the underlying mechanisms of these associations

    A Novel Fibronectin Binding Motif in MSCRAMMs Targets F3 Modules

    Get PDF
    BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21-205 of the lipoprotein.Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence.We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities

    Staphylococcus aureus Keratinocyte Invasion Is Dependent upon Multiple High-Affinity Fibronectin-Binding Repeats within FnBPA

    Get PDF
    Staphylococcus aureus is a commensal organism and a frequent cause of skin and soft tissue infections, which can progress to serious invasive disease. This bacterium uses its fibronectin binding proteins (FnBPs) to invade host cells and it has been hypothesised that this provides a protected niche from host antimicrobial defences, allows access to deeper tissues and provides a reservoir for persistent or recurring infections. FnBPs contain multiple tandem fibronectin-binding repeats (FnBRs) which bind fibronectin with varying affinity but it is unclear what selects for this configuration. Since both colonisation and skin infection are dependent upon the interaction of S. aureus with keratinocytes we hypothesised that this might select for FnBP function and thus composition of the FnBR region. Initial experiments revealed that S. aureus attachment to keratinocytes is rapid but does not require FnBRs. By contrast, invasion of keratinocytes was dependent upon the FnBR region and occurred via similar cellular processes to those described for endothelial cells. Despite this, keratinocyte invasion was relatively inefficient and appeared to include a lag phase, most likely due to very weak expression of α5β1 integrins. Molecular dissection of the role of the FnBR region revealed that efficient invasion of keratinocytes was dependent on the presence of at least three high-affinity (but not low-affinity) FnBRs. Over-expression of a single high-affinity or three low-affinity repeats promoted invasion but not to the same levels as S. aureus expressing an FnBPA variant containing three high-affinity repeats. In summary, invasion of keratinocytes by S. aureus requires multiple high-affinity FnBRs within FnBPA, and given the importance of the interaction between these cell types and S. aureus for both colonisation and infection, may have provided the selective pressure for the multiple binding repeats within FnBPA

    Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    Get PDF
    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability

    Development of an Innovative in Vitro Potency Assay for Anti-Botulinum Antitoxins

    No full text
    Botulinum neurotoxins are bacterial proteins that cause botulism, a life-threatening disease. Therapy relies mostly on post-intoxication antibody treatment. The only accepted method to measure the potency of, and to approve, antitoxin preparations is the mouse lethality neutralization bioassay. However, this assay is time-consuming, labor-intensive, costly, and raises ethical issues related to the large numbers of laboratory animals needed. Until now, all efforts to develop an alternative in vitro assay have not provided a valid replacement to the mouse potency assay. In the present study, we report the development of an innovative in vitro assay for determining botulinum antitoxin potency, using botulinum type B as a model. The concept of the assay is to mimic two fundamental steps in botulinum intoxication: receptor binding and catalytic activity. By simulating these steps in vitro we were able to accurately determine the potency of antitoxin preparations. The reproducibility of the assay was high with a CV < 13%. Most importantly, the antitoxin potency measured by the in vitro assay highly correlated with that measured by the standard in vivo mouse assay (r = 0.9842, p < 0.0001). Thus, this new in vitro assay has the potential to be considered, after validation, as a replacement to the mouse assay for quantitating neutralizing antibody concentrations in pharmaceutical botulinum antitoxin preparations. Future adoption of this in vitro assay would minimize the use of laboratory animals, speed up the time, and reduce the cost of botulinum antitoxin approval

    Paraneoplastic Seronegative Pauci-Immune Glomerulonephritis Associated with Lung Adenocarcinoma Responds to Rituximab: A Case Report

    No full text
    Anti-neutrophil cytoplasmic antibodies (ANCA) play an important role in the pathogenesis of pauci-immune renal vasculitis. However, in 10% of the cases, ANCA are absent. We present a case of a 64-year-old man with a chronic untreated hepatitis C virus infection and Middle Eastern thalassemia who was ANCA-negative when he was hospitalized due to acute kidney injury and accounts for an uncommon presentation of renal vasculitis. The patient had earlier reported to have undergone local lobectomy and adjuvant chemotherapy (carboplatin/pemetrexed) for lung adenocarcinoma a month prior. IL-6 has been reported to be involved in the pathophysiological cascade causing pauci-immune glomerulonephritis amongst non-small cell lung cancer patients. Previous studies with subgroup analysis have demonstrated that ANCA negativity has been associated with more chronic glomerular lesions and less crescent formation, which tends to have a critical outcome in the renal system. However, our patient underwent kidney biopsy exhibiting active crescentic glomerulonephritis, pauci-immune type with 5 cellular crescents amongst 15 glomeruli. To our knowledge, this is the third reported case of ANCA-negative vasculitis with typical presentation on biopsy in non-small cell lung cancer patients
    corecore