3,984 research outputs found
Properties of "35" Spin-(5/2) Baryon Resonances in a Model with Broken SU(3)
We investigate the properties of a set of J =(5/2)^+ resonances appearing in a 35-dimensional representation of
SU(3), as proposed by Abers, Balázs, and Hara. A simple dynamical calculation gives an estimate for the
mass differences within the supermultiplet. The matrix elements for the SU(3) allowed decays into meson
plus resonance are given in terms of one parameter and the SU(3)-violating matrix elements for decay into
meson plus baryon are given by two parameters
M meson and a generalization of the Pomeranchuk relations
Under the hypothesis that a K-π resonance is vector, we examine its role in the associated production of Λ by π and in Λ production by K. We shall demonstrate the existence of a new symmetry between two reaction amplitudes. This symmetry may be regarded as a generalization of Pomeranchuk's relations and should appear at high energies and low momentum transfers when both amplitudes are dominated by the same pole or pseudopole, as is to be expected according to the Regge pole hypothesis. Specifically, we find, in considering the details of the role of a strange vector meson in the processes π+N→Λ+K and K +N→Λ+π, that the associated production amplitude in the forward direction (for the K) at high energies is asymptotically equal to the negative of the amplitude characterizing Λ production by a K. The contribution of the dominant pole terms in these amplitudes is constructed for the high-energy limit and the energy and momentum transfer dependences are compared for the alternative hypothesis of composite or elementary particle behavior of a pole term. We discuss experiments which are needed to supply data for a test of the Regge pole hypothesis. The results of these experiments, which are feasible with the new large accelerators, will be most important as guides for the construction of theories of the strong interactions
A Note on the Leptonic Decays of the K-Meson
In this note we present an analysis of the leptonic decay modes of the K-meson in terms of a four-parameter representation of the two form factors F1(q^2) and F3(q^2) which describe the matrix element of the vector current of the weak interactions, . Such a representation, while general enough to take account of the violation of the ΔΙ = 1/2 rule and the possible existence of two resonances in the K-π system, no longer permits unique predictions for the ratio of the electron to muon decay rate, or of the pion spectrum. We therefore suggest that experiments be carried out to determine the four unknown parameters, and theoretical attention be turned to relating these parameters to measurable quantities occurring in related processes
Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System
In a previous task, the Applied Meteorology Unit (AMU) developed spatial and temporal climatologies of lightning occurrence based on eight atmospheric flow regimes. The AMU created climatological, or composite, soundings of wind speed and direction, temperature, and dew point temperature at four rawinsonde observation stations at Jacksonville, Tampa, Miami, and Cape Canaveral Air Force Station, for each of the eight flow regimes. The composite soundings were delivered to the National Weather Service (NWS) Melbourne (MLB) office for display using the National version of the Skew-T Hodograph analysis and Research Program (NSHARP) software program. The NWS MLB requested the AMU make the composite soundings available for display in the Advanced Weather Interactive Processing System (AWIPS), so they could be overlaid on current observed soundings. This will allow the forecasters to compare the current state of the atmosphere with climatology. This presentation describes how the AMU converted the composite soundings from NSHARP Archive format to Network Common Data Form (NetCDF) format, so that the soundings could be displayed in AWl PS. The NetCDF is a set of data formats, programming interfaces, and software libraries used to read and write scientific data files. In AWIPS, each meteorological data type, such as soundings or surface observations, has a unique NetCDF format. Each format is described by a NetCDF template file. Although NetCDF files are in binary format, they can be converted to a text format called network Common data form Description Language (CDL). A software utility called ncgen is used to create a NetCDF file from a CDL file, while the ncdump utility is used to create a CDL file from a NetCDF file. An AWIPS receives soundings in Binary Universal Form for the Representation of Meteorological data (BUFR) format (http://dss.ucar.edu/docs/formats/bufr/), and then decodes them into NetCDF format. Only two sounding files are generated in AWIPS per day. One file contains all of the soundings received worldwide between 0000 UTC and 1200 UTC, and the other includes all soundings between 1200 UTC and 0000 UTC. In order to add the composite soundings into AWIPS, a procedure was created to configure, or localize, AWIPS. This involved modifying and creating several configuration text files. A unique fourcharacter site identifier was created for each of the 32 soundings so each could be viewed separately. The first three characters were based on the site identifier of the observed sounding, while the last character was based on the flow regime. While researching the localization process for soundings, the AMU discovered a method of archiving soundings so old soundings would not get purged automatically by AWl PS. This method could provide an alternative way of localizing AWl PS for composite soundings. In addition, this would allow forecasters to use archived soundings in AWIPS for case studies. A test sounding file in NetCDF format was written in order to verify the correct format for soundings in AWIPS. After the file was viewed successfully in AWIPS, the AMU wrote a software program in the Tool Command Language/Tool Kit (Tcl/Tk) language to convert the 32 composite soundings from NSHARP Archive to CDL format. The ncgen utility was then used to convert the CDL file to a NetCDF file. The NetCDF file could then be read and displayed in AWIPS
Targeted anion transporter delivery by coiled-coil driven membrane fusion
Synthetic anion transporters (anionophores) have potential as biomedical research tools and therapeutics. However, the efficient and specific delivery of these highly lipophilic molecules to a target cell membrane is non-trivial. Here, we investigate the delivery of a powerful anionophore to artificial and cell membranes using a coiled-coil-based delivery system inspired by SNARE membrane fusion proteins. Incorporation of complementary lipopeptides into the lipid membranes of liposomes and cell-sized giant unilamellar vesicles (GUVs) facilitated the delivery of a powerful anionophore into GUVs, where its anion transport activity was monitored in real time by fluorescence microscopy. Similar results were achieved using live cells engineered to express a halide-sensitive fluorophore. We conclude that coiled-coil driven membrane fusion is a highly efficient system to deliver anionophores to target cell membranes.info:eu-repo/semantics/publishe
Transcranial direct current stimulation of the motor cortex in the treatment of chronic non-specific low back pain. A randomised, double-blind exploratory study
This exploratory study aimed to test the proof of principle that active anodal transcranial direct current stimulation (tDCS) applied to the motor cortex reduces pain significantly more than sham stimulation in a group of participants with chronic non-specific low back pain
Applied Meteorology Unit - Operational Contributions to Spaceport Canaveral
The Applied Meteorology Unit (AMU) provides technology development, evaluation and transition services to improve operational weather support to the Space Shuttle and the National Space Program. It is established under a Memorandum of Understanding among NASA, the Air Force and the National .Weather Service (NWS). The AMU is funded and managed by NASA and operated by ENSCO, Inc. through a competitively awarded NASA contract. The primary customers are the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS), FL; the Spaceflight Meteorology Group (SMG) at Johnson Space Center (JSC) in Houston, TX; and the NWS office in Melbourne, FL (NWS MLB). This paper will briefly review the AMU's history and describe the three processes through which its work is assigned. Since its inception in 1991 the AMU has completed 72 projects, all of which are listed at the end of this paper. At least one project that highlights each of the three tasking processes will be briefly reviewed. Some of the projects that have been especially beneficial to the space program will also be discussed in more detail, as will projects that developed significant new techniques or science in applied meteorology
Genome landscapes and bacteriophage codon usage
Across all kingdoms of biological life, protein-coding genes exhibit unequal
usage of synonmous codons. Although alternative theories abound, translational
selection has been accepted as an important mechanism that shapes the patterns
of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns
of codon usage across 74 diverse bacteriophages that infect E. coli, P.
aeruginosa and L. lactis as their primary host. We introduce the concept of a
`genome landscape,' which helps reveal non-trivial, long-range patterns in
codon usage across a genome. We develop a series of randomization tests that
allow us to interrogate the significance of one aspect of codon usage, such a
GC content, while controlling for another aspect, such as adaptation to
host-preferred codons. We find that 33 phage genomes exhibit highly non-random
patterns in their GC3-content, use of host-preferred codons, or both. We show
that the head and tail proteins of these phages exhibit significant bias
towards host-preferred codons, relative to the non-structural phage proteins.
Our results support the hypothesis of translational selection on viral genes
for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference
Low Temperature Opacities
Previous computations of low temperature Rosseland and Planck mean opacities
from Alexander & Ferguson (1994) are updated and expanded. The new computations
include a more complete equation of state with more grain species and updated
optical constants. Grains are now explicitly included in thermal equilibrium in
the equation of state calculation, which allows for a much wider range of grain
compositions to be accurately included than was previously the case. The
inclusion of high temperature condensates such as AlO and CaTiO
significantly affects the total opacity over a narrow range of temperatures
before the appearance of the first silicate grains.
The new opacity tables are tabulated for temperatures ranging from 30000 K to
500 K with gas densities from 10 g cm to 10 g cm.
Comparisons with previous Rosseland mean opacity calculations are discussed. At
high temperatures, the agreement with OPAL and Opacity Project is quite good.
Comparisons at lower temperatures are more divergent as a result of differences
in molecular and grain physics included in different calculations. The
computation of Planck mean opacities performed with the opacity sampling method
are shown to require a very large number of opacity sampling wavelength points;
previously published results obtained with fewer wavelength points are shown to
be significantly in error. Methods for requesting or obtaining the new tables
are provided.Comment: 39 pages with 12 figures. To be published in ApJ, April 200
- …
