402 research outputs found
An optical-IR jet in 3C133
We report the discovery of a new optical-IR synchrotron jet in the radio
galaxy 3C133 from our HST/NICMOS snapshot survey. The jet and eastern hotspot
are well resolved, and visible at both optical and IR wavelengths. The IR jet
follows the morphology of the inner part of the radio jet, with three distinct
knots identified with features in the radio. The radio-IR SED's of the knots
are examined, along with those of two more distant hotspots at the eastern
extreme of the radio feature. The detected emission appears to be synchrotron,
with peaks in the NIR for all except one case, which exhibits a power-law
spectrum throughout.Comment: ApJ accepted. 14 pages, 6 figure
Small Molecule LC-MS/MS Fragmentation Data Analysis and Application to Siderophore Identification
Rapid developments in tandem liquid chromatography-mass spectrometry (LC-MS/MS) have created wide interest in applications for the analysis of small molecule mixtures. MS/MS spectra can contain rich structural information, but because of the structural diversity of small molecules and different data acquisition methods, analysis algorithms and workflows frequently need to be tailored to individual research questions. This chapter shows how MATLAB can be used for LC-MS/MS-based structural characterization of small molecules. Starting with the import of raw data, ways for visualization and the creation of graphical user interfaces (GUIs) for individual applications are demonstrated. A selection of frequently used algorithms for pre-processing and data analysis is reviewed in context of their MATLAB implementation. The approaches are then tailored and applied to the analysis of iron-binding peptides (peptidic siderophores) by high-resolution LC-MS/MS. The method uses a database with siderophore structures to exploit prior knowledge about siderophore structural diversity for the interpretation of MS/MS spectra from known and new siderophores
Mutated in colorectal cancer (MCC) is a novel oncogene in B lymphocytes
BACKGROUND: Identification of novel genetic risk factors is imperative for a better understanding of B lymphomagenesis and for the development of novel therapeutic strategies. TRAF3, a critical regulator of B cell survival, was recently recognized as a tumor suppressor gene in B lymphocytes. The present study aimed to identify novel oncogenes involved in malignant transformation of TRAF3-deficient B cells. METHODS: We used microarray analysis to identify genes differentially expressed in TRAF3(−/−) mouse splenic B lymphomas. We employed lentiviral vector-mediated knockdown or overexpression to manipulate gene expression in human multiple myeloma (MM) cell lines. We analyzed cell apoptosis and proliferation using flow cytometry, and performed biochemical studies to investigate signaling mechanisms. To delineate protein-protein interactions, we applied affinity purification followed by mass spectrometry-based sequencing. RESULTS: We identified mutated in colorectal cancer (MCC) as a gene strikingly up-regulated in TRAF3-deficient mouse B lymphomas and human MM cell lines. Aberrant up-regulation of MCC also occurs in a variety of primary human B cell malignancies, including non-Hodgkin lymphoma (NHL) and MM. In contrast, MCC expression was not detected in normal or premalignant TRAF3(−/−) B cells even after treatment with B cell stimuli, suggesting that aberrant up-regulation of MCC is specifically associated with malignant transformation of B cells. In elucidating the functional roles of MCC in malignant B cells, we found that lentiviral shRNA vector-mediated knockdown of MCC induced apoptosis and inhibited proliferation in human MM cells. Experiments of knockdown and overexpression of MCC allowed us to identify several downstream targets of MCC in human MM cells, including phospho-ERK, c-Myc, p27, cyclin B1, Mcl-1, caspases 8 and 3. Furthermore, we identified 365 proteins (including 326 novel MCC-interactors) in the MCC interactome, among which PARP1 and PHB2 were two hubs of MCC signaling pathways in human MM cells. CONCLUSIONS: Our results indicate that in sharp contrast to its tumor suppressive role in colorectal cancer, MCC functions as an oncogene in B cells. Our findings suggest that MCC may serve as a diagnostic marker and therapeutic target in B cell malignancies, including NHL and MM. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13045-014-0056-6) contains supplementary material, which is available to authorized users
Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study
Background: All spinocerebellar ataxias (SCAs) are rare diseases. SCA1, 2, 3 and 6 are the four most common SCAs, all caused by expanded polyglutamine-coding CAG repeats. Their pathomechanisms are becoming increasingly clear and well-designed clinical trials will be needed. Methods: To characterize the clinical manifestations of spinocerebellar ataxia (SCA) 1, 2, 3 and 6 and their natural histories in the United States (US), we conducted a prospective multicenter study utilized a protocol identical to the European consortium study, using the Scale for the Assessment and Rating of Ataxia (SARA) score as the primary outcome, with follow-ups every 6 months up to 2 years. Results: We enrolled 345 patients (60 SCA1, 75 SCA2, 138 SCA3 and 72 SCA6) at 12 US centers. SCA6 patients had a significantly later onset, and SCA2 patients showed greater upper-body ataxia than patients with the remaining SCAs. The annual increase of SARA score was greater in SCA1 patients (mean ± SE: 1.61 ± 0.41) than in SCA2 (0.71 ± 0.31), SCA3 (0.65 ± 0.24) and SCA6 (0.87 ± 0.28) patients (p = 0.049). The functional stage also worsened faster in SCA1 than in SCA2, 3 and 6 (p = 0.002). Conclusions: The proportions of different SCA patients in US differ from those in the European consortium study, but as in the European patients, SCA1 progress faster than those with SCA2, 3 and 6. Later onset in SCA6 and greater upper body ataxia in SCA2 were noted. We conclude that progression rates of these SCAs were comparable between US and Europe cohorts, suggesting the feasibility of international collaborative clinical studies
HST NIR Snapshot Survey of 3CR Radio Source Counterparts II: An Atlas and Inventory of the Host Galaxies, Mergers and Companions
We present the second part of an H-band (1.6 microns) atlas of z<0.3 3CR
radio galaxies, using the Hubble Space Telescope Near Infrared Camera and
Multi-Object Spectrometer (HST NICMOS2). We present new imaging for 21 recently
acquired sources, and host galaxy modeling for the full sample of 101
(including 11 archival) -- an 87% completion rate. Two different modeling
techniques are applied, following those adopted by the galaxy morphology and
the quasar host galaxy communities. Results are compared, and found to be in
excellent agreement, although the former breaks down in the case of strongly
nucleated sources. Companion sources are tabulated, and the presence of
mergers, tidal features, dust disks and jets are catalogued. The tables form a
catalogue for those interested in the structural and morphological dust-free
host galaxy properties of the 3CR sample, and for comparison with morphological
studies of quiescent galaxies and quasar host galaxies. Host galaxy masses are
estimated, and found to typically lie at around 2*10^11 solar masses. In
general, the population is found to be consistent with the local population of
quiescent elliptical galaxies, but with a longer tail to low Sersic index,
mainly consisting of low-redshift (z<0.1) and low-radio-power (FR I) sources. A
few unusually disky FR II host galaxies are picked out for further discussion.
Nearby external sources are identified in the majority of our images, many of
which we argue are likely to be companion galaxies or merger remnants. The
reduced NICMOS data are now publicly available from our website
(http://archive.stsci.edu/prepds/3cr/)Comment: ApJS, 177, 148: Final version; includes revised figures 1, 15b, and
section 7.5 (and other minor changes from editing process. 65 pages, inc. 17
figure
An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface
Recommended from our members
Novel Phosphorylation Sites in the S. cerevisiae Cdc13 Protein Reveal New Targets for Telomere Length Regulation
The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics. [Image: see text
The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation.
Inflammasomes are protein platforms linking recognition of microbe, pathogen-associated and damage-associated molecular patterns by cytosolic sensory proteins to caspase-1 activation. Caspase-1 promotes pyroptotic cell death and the maturation and secretion of interleukin (IL)-1β and IL-18, which trigger inflammatory responses to clear infections and initiate wound-healing; however, excessive responses cause inflammatory disease. Inflammasome assembly requires the PYRIN domain (PYD)-containing adaptor ASC, and depends on PYD-PYD interactions. Here we show that the PYD-only protein POP2 inhibits inflammasome assembly by binding to ASC and interfering with the recruitment of ASC to upstream sensors, which prevents caspase-1 activation and cytokine release. POP2 also impairs macrophage priming by inhibiting the activation of non-canonical IκB kinase ɛ and IκBα, and consequently protects from excessive inflammation and acute shock in vivo. Our findings advance our understanding of the complex regulatory mechanisms that maintain a balanced inflammatory response and highlight important differences between individual POP members
Multiplexed single-cell proteomics using SCoPE2
Many biological systems are composed of diverse single cells. This diversity necessitates functional and molecular single-cell analysis. Single-cell protein analysis has long relied on affinity reagents, but emerging mass-spectrometry methods (either label-free or multiplexed) have enabled quantifying >1,000 proteins per cell while simultaneously increasing the specificity of protein quantification. Here we describe the Single Cell ProtEomics (SCoPE2) protocol, which uses an isobaric carrier to enhance peptide sequence identification. Single cells are isolated by FACS or CellenONE into multiwell plates and lysed by Minimal ProteOmic sample Preparation (mPOP), and their peptides labeled by isobaric mass tags (TMT or TMTpro) for multiplexed analysis. SCoPE2 affords a cost-effective single-cell protein quantification that can be fully automated using widely available equipment and scaled to thousands of single cells. SCoPE2 uses inexpensive reagents and is applicable to any sample that can be processed to a single-cell suspension. The SCoPE2 workflow allows analyzing ~200 single cells per 24 h using only standard commercial equipment. We emphasize experimental steps and benchmarks required for achieving quantitative protein analysis
- …
