62 research outputs found

    Cohort Randomised Controlled Trial of a Multifaceted Podiatry Intervention for the Prevention of Falls in Older People (The REFORM Trial)

    Get PDF
    BACKGROUND: Falls are a major cause of morbidity among older people. A multifaceted podiatry intervention may reduce the risk of falling. This study evaluated such an intervention. DESIGN: Pragmatic cohort randomised controlled trial in England and Ireland. 1010 participants were randomised (493 to the Intervention group and 517 to Usual Care) to either: a podiatry intervention, including foot and ankle exercises, foot orthoses and, if required, new footwear, and a falls prevention leaflet or usual podiatry treatment plus a falls prevention leaflet. The primary outcome was the incidence rate of self-reported falls per participant in the 12 months following randomisation. Secondary outcomes included: proportion of fallers and those reporting multiple falls, time to first fall, fear of falling, Frenchay Activities Index, Geriatric Depression Scale, foot pain, health related quality of life, and cost-effectiveness. RESULTS: In the primary analysis were 484 (98.2%) intervention and 507 (98.1%) control participants. There was a small, non statistically significant reduction in the incidence rate of falls in the intervention group (adjusted incidence rate ratio 0.88, 95% CI 0.73 to 1.05, p = 0.16). The proportion of participants experiencing a fall was lower (49.7 vs 54.9%, adjusted odds ratio 0.78, 95% CI 0.60 to 1.00, p = 0.05) as was the proportion experiencing two or more falls (27.6% vs 34.6%, adjusted odds ratio 0.69, 95% CI 0.52 to 0.90, p = 0.01). There was an increase (p = 0.02) in foot pain for the intervention group. There were no statistically significant differences in other outcomes. The intervention was more costly but marginally more beneficial in terms of health-related quality of life (mean quality adjusted life year (QALY) difference 0.0129, 95% CI -0.0050 to 0.0314) and had a 65% probability of being cost-effective at a threshold of £30,000 per QALY gained. CONCLUSION: There was a small reduction in falls. The intervention may be cost-effective. TRIAL REGISTRATION: ISRCTN ISRCTN68240461

    Polymorphisms in NF-κB Inhibitors and Risk of Epithelial Ovarian Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nuclear factor-κB (NF-κB) family is a set of transcription factors with key roles in the induction of the inflammatory response and may be the link between inflammation and cancer development. This pathway has been shown to influence ovarian epithelial tissue repair. Inhibitors of κB (IκB) prevent NF-κB activation by sequestering NF-κB proteins in the cytoplasm until IκB proteins are phosphorylated and degraded.</p> <p>Methods</p> <p>We used a case-control study to evaluate the association between single nucleotide polymorphisms (SNPs) in <it>NFKBIA </it>and <it>NFKBIB </it>(the genes encoding IκBα and IκBβ, respectively) and risk of epithelial ovarian cancer. We queried 19 tagSNPs and putative-functional SNPs among 930 epithelial ovarian cancer cases and 1,037 controls from two studies.</p> <p>Results</p> <p>The minor allele for one synonymous SNP in <it>NFKBIA</it>, rs1957106, was associated with decreased risk (p = 0.03).</p> <p>Conclusion</p> <p>Considering the number of single-SNP tests performed and null gene-level results, we conclude that <it>NFKBIA </it>and <it>NFKBIB </it>are not likely to harbor ovarian cancer risk alleles. Due to its biological significance in ovarian cancer, additional genes encoding NF-κB subunits, activating and inhibiting molecules, and signaling molecules warrant interrogation.</p

    Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection

    Get PDF
    To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity. Methodology/Principal Findings Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-α-induction was TLR4- and TLR2-dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4 mutant mice. Conclusion/Significance We propose that Brucella has developed a stealth strategy through PAMPs reduction, modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular pathogens phylogenetically related to Brucella that also cause long lasting infections

    Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export

    Get PDF
    Background: The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. Methodology/Principal Findings: To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. Conclusions/Significance: The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.This work was funded by the European Commission (Research Contract QLK2-CT-2002-00918) and the Ministerio de Ciencia y Tecnología of Spain (Proyecto AGL2004-01162/GAN)

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    17β-Estradiol hydroxylation catalyzed by human cytochrome P450 1B1

    No full text
    The 4-hydroxy metabolite of 17β-estradiol (E2) has been implicated in the carcinogenicity of this hormone. Previous studies showed that aryl hydrocarbon-receptor agonists induced a cytochrome P450 that catalyzed the 4- hydroxylation of E2. This activity was associated with human P450 1B1. To determine the relationship of the human P450 1B1 gene product and E2 4- hydroxylation, the protein was expressed in Saccharomyces cerevisiae. Microsomes from the transformed yeast catalyzed the 4- and 2-hydroxylation of E2 with K(m) values of 0.71 and 0.78 μM and turnover numbers of 1.39 and 0.27 nmol product min-1 · nmol P450-1, respectively. Treatment of MCF-7 human breast cancer cells with the aryl hydrocarbon-receptor ligand indolo[3,2-b]carbazole resulted in a concentration-dependent increase in P450 1B1 and P450 1A1 mRNA levels, and caused increased rates of 2-, 4-, 6α-, and 15α-hydroxylation of E2. At an E2 concentration of 10 nM, the increased rates of 2- and 4-hydroxylation were approximately equal, emphasizing the significance of the low K(m) P450 1B1-component of E2 metabolism. These studies demonstrate that human P450 1B1 a catalytically efficient E2 4- hydroxylase that is likely to participate in endocrine regulation and the toxicity of estrogens

    Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells

    No full text
    Human cytochromes P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) catalyze the metabolic activation of a number of procarcinogens and the hydroxylation of 17β-estradiol (E2) at the C-2 and C-4 positions, respectively. The aromatic hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodi-benzo-p-dioxin (TCDD) has a marked effect on estrogen metabolism in MCF-7 breast-tumor cells by induction of these two enzymes. To investigate whether induction of CYP1A1 and CYP1B1 by AhR agonists and the associated increase in E2 metabolism are common to all breast epithelial cells and breast-tumor cells, we determined the effects of TCDD on E2 metabolism, and CYP1A1 and CYP1B1 mRNA levels in a series of non-tumor-derived breast epithelial (184A1 and MCF-1OA) and breast-tumor (MCF-7, T-47D, ZR-75-1, BT-20, MDA-MB-157, MDA-MB-231 and MDA-MB-436) cell lines. In 184A1 cells, which did not express detectable estrogen receptor (ER) α mRNA, CYP1A1 mRNA and activity were induced by TCDD, and enhanced E2 metabolism in TCDD-treated cells was predominantly E2 2-hydroxylation. In MCF-1OA, MCF-7, T-47D, ZR-75-1 and BT-20 cells, which expressed varying levels of ERα mRNA, both CYP1A1 and CYP1B1 mRNA levels and rates of both E2 2- and 4-hydroxylation were highly elevated following exposure to TCDD. In MDA-MB-157, MDA-MB-231 and MDA-MB-436 cells, which did not express detectable ERα mRNA and generally displayed fibroblastic or mesenchymal rather than epithelial morphology, CYP1B1 induction was favored, and the rate of E2 4-hydroxylation exceeded that of 2-hydroxylation in TCDD-treated cells. These results show that breast epithelial cells and tumor cells vary widely with regard to AhR-mediated CYP1A1 and CYP1B1 induction, suggesting that factors in addition to the AhR regulate CYP1A1 and CYP1B1 gene expression. In these cell lines, significant CYP1A1 inducibility was restricted to cultures displaying epithelial morphology, whereas CYP1B1 inducibility was observed in cells of both epithelial and mesenchymal morphology

    Induction of cytochrome P450 1B1 and catechol estrogen metabolismin ACHN human renal adrenocarcinoma cells

    No full text
    The catechol estrogen metabolites of 17β-estradiol (E2), 2-hydroxyestradiol (OHE2) and 4-OHE2, differ in hormonal properties and carcinogenic potential. In Syrian hamster kidney, 4-OHE2 induces clear-cell carcinoma whereas 2-OHE2 does not, and an E2 4-hydroxylase appears to be involved in E2-induced carcinogenesis in these animals. specific E2 4-hydroxylase activity has been observed in extrahepatic tissues from several species. In humans, cytochrome P450 1B1 (CYP1B1) appears to be an extrahepatic E2 4-hydroxylase under the regulatory control of the aromatic hydrocarbon receptor (AhR). As an initial approach to investigating CYP1B1 expression and E2 4-hydroxylase activity in human kidney, we used the ACHN cell line, derived from a human renal adenocarcinoma. In untreated ACHN cells, a very low level of CYP1B1 mRNA expression was observed and CYP1B1 protein could not be detected; however, in ACHN cells exposed to the high-affinity AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), CYP1B1 mRNA levels were elevated 28-fold, and the CYP1B1 protein was detected by immunoblot analysis. Exposure of ACHN cells to TCDD resulted in minimal induction of the CYP1A1 mRNA, and the CYP1A1 protein was not detectable prior to or after exposure to TCDD. E2 hydroxylase activity could not detected with microsomes from untreated ACHN cells, although activities at C-4 and, to a lesser extent, at C-2 of E2 were observed with microsomes from TCDD-treated ACHN cells. In experiments with intact ACHN cells, elevated rates of formation of 4-methoxyestradiol (MeOE2) and 2-MeOE2 were observed in response to treatment with TCDD. The EC50 for induction of the CYP1B1 mRNA was 1.5 nM TCDD; EC50s for the stimulation of 2- and 4-MeOE2 formation were 0.68 and 1.1 nM TCDD. These results indicate that the ACHN cell line may be a useful in vitro model system to study the regulation of CYP1B1 expression and the cytotoxic effects associated with E2 4-hydroxylation
    corecore