232 research outputs found

    MicroRNAs in the pathophysiology and treatment of status epilepticus

    Get PDF
    MicroRNA (miRNA) are an important class of non-coding RNA which function as post-transcriptional regulators of gene expression in cells, repressing and fine-tuning protein output. Prolonged seizures (status epilepticus, SE) can cause damage to brain regions such as the hippocampus and result in cognitive deficits and the pathogenesis of epilepsy. Emerging work in animal models has found that SE produces select changes to miRNAs within the brain. Similar changes in over 20 miRNAs have been found in the hippocampus in two or more studies, suggesting conserved miRNA responses after SE. The miRNA changes that accompany SE are predicted to impact levels of multiple proteins involved in neuronal morphology and function, gliosis, neuroinflammation, and cell death. miRNA expression also displays select changes in the blood after SE, supporting blood genomic profiling as potential molecular biomarkers of seizure-damage or epileptogenesis. Intracerebral delivery of chemically modified antisense oligonucleotides (antagomirs) has been shown to have potent, specific and long-lasting effects on brain levels of miRNAs. Targeting miR-34a, miR-132 and miR-184 has been reported to alter seizure-induced neuronal death, whereas targeting miR-134 was neuroprotective, reduced seizure severity during status epilepticus and reduced the later emergence of recurrent spontaneous seizures. These studies support roles for miRNAs in the pathophysiology of status epilepticus and miRNAs may represent novel therapeutic targets to reduce brain injury and epileptogenesis

    Development of a novel model of focal cerebral ischaemia using endothelin isopeptides

    Get PDF

    Hippocampal astrogliosis and neuronal cell loss in an experimental P10 neonatal model of mesial temporal lobe epilepsy.

    Get PDF
    Mesial temporal lobe epilepsy (MTLE) is the most common form of intractable seizure disorder in adults. It is associated with an asymmetrical pattern of neuron loss within the hilus and CA1 hippocampal subfields, with relative sparing of the dentate granule neurons and the CA2 subfields. The amygdalar nuclei and the cortical neurons are other areas that are rarely involved in MTLE.1 The neuropathological changes that bring about focally evoked seizures in the adult are thought to begin in the early stages of neonatal life. A wide range of factors have been implicated in the causation of MTLE, such as febrile seizures and traumatic brain injury.2 Some studies indicate that up to 74% of those who experience early life status epilepticus develop epilepsy at a later stage.2 The objective of this study is to investigate the neuropathological changes induced by intra-amygdalar kainic acid (KA) microinjection in a postnatal day 10 (P10) rat model of MTLE.

    Detection of 14-3-3zeta in cerebrospinal fluid following experimentally evoked seizures.

    Get PDF
    Surrogate and peripheral (bio)markers of neuronal injury may be of value in assessing effects of seizures on the brain or epilepsy development following trauma. The presence of 14-3-3 isoforms in cerebrospinal fluid (CSF) is a diagnostic indicator of Creutzfeldt-Jakob disease but these proteins may also be present following acute neurological insults. Here, we examined neuronal and 14-3-3 proteins in CSF from rats after seizures. Seizures induced by intra-amygdala microinjection of 0.1 microg kainic acid (KA) caused damage which was mainly restricted to the ipsilateral CA3 subfield of the hippocampus. 14-3-3zeta was detected at significant levels in CSF sampled 4 h after seizures compared with near absence in control CSF. Neuron-specific nuclear protein (NeuN) was also elevated in CSF in seizure rats. CSF 14-3-3zeta levels were significantly lower in rats treated with 0.01 microg KA. These data suggest the presence of 14-3-3zeta within CSF may be a biomarker of acute seizure damage

    Kainic acid-induced seizures modulate Akt (SER473) phosphorylation in the hippocampus of dopamine D2 receptor knockout mice.

    Get PDF
    Dopamine D2 receptor (D2R) signalling has been shown to modulate seizure-induced hippocampal cell death. D2R knockout (D2R-/-) mice are more susceptible to kainic acid (KA)-induced excitotoxicity, displaying cell death in the CA3 subfield of the hippocampus at KA doses not damaging in wild-type (WT) animals. Absence of D2R signalling in the hippocampus leads to activation (dephosphorylation) of glycogen synthase kinase 3β (GSK-3β) after KA (20 mg/kg), which is not associated with a change in the phosphorylation of the GSK-3β regulator Akt at the canonical threonine 308 residue. In the present study, we investigated alternative pathways responsible for the activation of GSK-3β in the hippocampus of the D2R-/- mice 24 h following KA-induced seizures. Here, we show that phosphorylation of Akt occurs at serine 473 (Ser473) in the CA3 region of WT but not D2R-/- mice following KA. Moreover, the CA1 subregion, which does not undergo neurodegeneration in either WT or D2R-/- mice, displays a strong induction of Akt (Ser473) phosphorylation after KA. Additionally, the vulnerability in the CA3 is not associated with changes to p38MAPK and Dishevelled activation, and β-catenin does not appear to be a downstream target of the GSK-3β. Thus, we propose that GSK-3β phosphorylation-mediated hippocampal cell survival may depend on Akt (Ser473) phosphorylation; loss of D2R-mediated signalling in the CA3 region of D2R-/- mice leads to reduced Akt (Ser473) phosphorylation rendering neurons more vulnerable to apoptosis. Further investigation is required to fully elucidate the GSK-3β targets involved in D2R-dependent response to excitotoxicity

    Dynamic Field Programmable Logic-Driven Soft Exosuit

    Get PDF
    The next generation of etextiles foresees an era of smart wearable garments where embedded seamless intelligence provides the ability to sense, process and perform. Core to this vision is embedded textile functionality enabling dynamic configuration. In this paper we detail a methodology, design and implementation of a dynamic field programmable logic-driven fabric soft exosuit. Dynamic field programmability allows the soft exosuit to alter its functionality and adapt to specific exercise programs depending on the wearers need. The dynamic field programmability is enabled through motion based control arm movements of the soft exosuit triggering momentary sensors embedded in the fabric exosuit at specific joint placement points (right arm: wrist, elbow).The embedded circuitry in the fabric exosuit is implemented using a layered and interchangeable approach. This includes logic gate patches (AND,OR,NOT) and a layered textile interconnection panel. This modular and interchangeable design enhances the soft exosuits flexibility and adaptability. A truth table aligning to a rehabilitation healthcare use case was utilised. Tests were completed validating the field programmability of the soft exosuit and its capability to switch between its embedded logic driven circuitry and its operational and functionality options controlled by motion movement of the wearers right arm (elbow and wrist). Iterative exercise movement and acceleration based tests were completed to validate the functionality of the field programmable logic driven fabric exosuit. We demonstrate a working soft exosuit prototype with motion controlled operational functionality that can be applied to rehabilitation applications.Comment: 20 pages, 9 figure

    P2X receptors as targets for the treatment of status epilepticus.

    Get PDF
    Prolonged seizures are amongst the most common neurological emergencies. Status epilepticus is a state of continuous seizures that is life-threatening and prompt termination of status epilepticus is critical to protect the brain from permanent damage. Frontline treatment comprises parenteral administration of anticonvulsants such as lorazepam that facilitate γ-amino butyric acid (GABA) transmission. Because status epilepticus can become refractory to anticonvulsants in a significant proportion of patients, drugs which act on different neurotransmitter systems may represent potential adjunctive treatments. P2X receptors are a class of ligand-gated ion channel activated by ATP that contributes to neuro- and glio-transmission. P2X receptors are expressed by both neurons and glia in various brain regions, including the hippocampus. Electrophysiology, pharmacology and genetic studies suggest certain P2X receptors are activated during pathologic brain activity. Expression of several members of the family including P2X2, P2X4, and P2X7 receptors has been reported to be altered in the hippocampus following status epilepticus. Recent studies have shown that ligands of the P2X7 receptor can have potent effects on seizure severity during status epilepticus and mice lacking this receptor display altered seizures in response to chemoconvulsants. Antagonists of the P2X7 receptor also modulate neuronal death, microglial responses and neuroinflammatory signaling. Recent work also found altered neuronal injury and inflammation after status epilepticus in mice lacking the P2X4 receptor. In summary, members of the P2X receptor family may serve important roles in the pathophysiology of status epilepticus and represent novel targets for seizure control and neuroprotection

    Proteomic analysis of 14-3-3 zeta binding proteins in the mouse hippocampus.

    Get PDF
    14-3-3 proteins are ubiquitous molecular chaperones with important roles in brain development and neuronal function. Altered expression of 14-3-3 proteins has been reported in several neurologic and neurodegenerative disorders and identifying 14-3-3 binding proteins may provide important insights into the physiologic and pathophysiologic roles of these proteins. Particular interest has emerged on 14-3-3 zeta (ζ) in the setting of neuronal injury because reducing 14-3-3ζ levels triggers an endoplasmic reticulum stress-like response in neurons and increases vulnerability to excitotoxicity. Here we examined the subcellular distribution of 14-3-3ζ in the mouse hippocampus. We then used recombinant His-tagged 14-3-3ζ to pull-down interacting proteins from the mouse hippocampus followed by identification by liquid chromatography-mass spectrometry. 14-3-3ζ protein was present in the cytoplasm, microsomal compartment, nucleus and mitochondrial fractions of the mouse hippocampus. Recombinant 14-3-3ζ eluted 13 known 14-3-3 binding partners, including three other 14-3-3 isoforms, and 16 other proteins which have not previously been reported to bind 14-3-3ζ. The present study identifies potentially novel 14-3-3ζ binding proteins and contributes to defining the 14-3-3ζ interactome in the mouse brain

    P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control.

    Get PDF
    The P2X7 receptor is an ATP-gated non-selective cation-permeable ionotropic receptor selectively expressed in neurons and glia in the brain. Activation of the P2X7 receptor has been found to modulate neuronal excitability in the hippocampus and it has also been linked to microglia activation and neuroinflammatory responses. Accordingly, interest developed on the P2X7 receptor in disorders of the nervous system, including epilepsy. Studies show that expression of the P2X7 receptor is elevated in damaged regions of the brain after prolonged seizures (status epilepticus) in both neurons and glia. P2X7 receptor expression is also increased in the hippocampus in experimental epilepsy. Recent data show that mice lacking the P2X7 receptor display altered susceptibility to status epilepticus and that drugs targeting the P2X7 receptor have potent anticonvulsant effects. Together, this suggests that P2X7 receptor ligands may be useful adjunctive treatments for refractory status epilepticus or perhaps pharmacoresistant epilepsy. This review summarizes the evidence of P2X7 receptor involvement in the pathophysiology of epilepsy and the potential of drugs targeting this receptor for seizure control

    Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo.

    Get PDF
    14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ) isoform has been linked to endoplasmic reticulum (ER) function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress
    • …
    corecore