53 research outputs found

    Non-invasive assessment of coronary artery bypass graft patency using 16-slice computed tomography angiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasive coronary angiography is the gold standard means of imaging bypass vessels and carries a small but potentially serious risk of local vascular complications, including myocardial infarction, stroke and death. We evaluated computed tomography as a non-invasive means of assessing graft patency.</p> <p>Methods</p> <p>Fifty patients with previous coronary artery bypass surgery who were listed for diagnostic coronary angiography underwent contrast enhanced computed tomography angiography using a 16-slice computed tomography scanner. Images were retrospectively gated to the electrocardiogram and two dimensional axial, multiplanar and three dimensional reconstructions acquired. Sensitivity, specificity, positive and negative predictive value, accuracy and level of agreement for detection of graft patency by multidetector computed tomography.</p> <p>Results</p> <p>A total of 116 grafts were suitable for analysis. The specificity of CT for the detection of graft patency was 100%, with a sensitivity of 92.8%, positive predictive value 100%, negative predictive value 85.8% and an accuracy of 94.8%. The kappa value of agreement between the two means of measuring graft patency was 0.9. Mean radiation dose was 9.0 ± 7.2 mSv for coronary angiography and 18.5 ± 4 mSv for computed tomography. Pooled analysis of eight studies, incorporating 932 grafts, confirmed a 97% accuracy for the detection of graft patency by multidetector computed tomography.</p> <p>Conclusion</p> <p>Computed tomography is an accurate, rapid and non-invasive method of assessing coronary artery bypass graft patency. However, this was achieved at the expense of an increase in radiation dose.</p

    Behavioral Corporate Finance: An Updated Survey

    Full text link

    Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Analyst information precision and small earnings surprises

    Get PDF
    This study proposes and tests an alternative to the extant earnings management explanation for zero and small positive earnings surprises (i.e., analyst forecast errors). We argue that analysts’ ability to strategically induce slight pessimism in earnings forecasts varies with the precision of their information. Accordingly, we predict that the probability that a firm reports a small positive instead of a small negative earnings surprise is negatively related to earnings forecast uncertainty, and we present evidence consistent with this prediction. Our findings have important implications for the earnings management interpretation of the asymmetry around zero in the frequency distribution of earnings surprises. We demonstrate how empirically controlling for earnings forecast uncertainty can materially change inferences in studies that employ the incidence of zero and small positive earnings surprises to categorize firms as suspected of managing earnings
    corecore