103 research outputs found

    Three Dimensional Mapping of Texture in Dental Enamel

    Get PDF
    We have used synchrotron x-ray diffraction to study the crystal orientation in human dental enamel as a function of position within intact tooth sections. Keeping tooth sections intact has allowed us to construct 2D and 3D spatial distribution maps of the magnitude and orientation of texture in dental enamel. We have found that the enamel crystallites are most highly aligned at the expected occlusal points for a maxillary first premolar, and that the texture direction varies spatially in a three dimensional curling arrangement. Our results provide a model for texture in enamel which can aid researchers in developing dental composite materials for fillings and crowns with optimal characteristics for longevity, and will guide clinicians to the best method for drilling into enamel, in order to minimize weakening of remaining tooth structure, during dental restoration procedure

    Advances in Atomic Data for Neutron-Capture Elements

    Full text link
    Neutron(n)-capture elements (atomic number Z>30), which can be produced in planetary nebula (PN) progenitor stars via s-process nucleosynthesis, have been detected in nearly 100 PNe. This demonstrates that nebular spectroscopy is a potentially powerful tool for studying the production and chemical evolution of trans-iron elements. However, significant challenges must be addressed before this goal can be achieved. One of the most substantial hurdles is the lack of atomic data for n-capture elements, particularly that needed to solve for their ionization equilibrium (and hence to convert ionic abundances to elemental abundances). To address this need, we have computed photoionization cross sections and radiative and dielectronic recombination rate coefficients for the first six ions of Se and Kr. The calculations were benchmarked against experimental photoionization cross section measurements. In addition, we computed charge transfer (CT) rate coefficients for ions of six n-capture elements. These efforts will enable the accurate determination of nebular Se and Kr abundances, allowing robust investigations of s-process enrichments in PNe.Comment: To be published in IAU Symp. 283: Planetary Nebulae, an Eye to the Future; 2 page

    Photofragmentation of \u3ci\u3ecloso\u3c/i\u3e-Carboranes Part 1: Energetics of Decomposition

    Get PDF
    The ionic fragmentation following B 1s and C 1s excitation of three isomeric carborane cage compounds [closo-dicarbadodecaboranes: orthocarborane (1,2-C2B10H12), metacarborane (1,7-C2B10H12), and paracarborane (1,12-C2B10H12)] is compared with the energetics of decomposition. The fragmentation yields for all three molecules are quite similar. Thermodynamic cycles are constructed for neutral and ionic species in an attempt to systemically characterize single-ion closo-carborane creation and fragmentation processes. Lower energy decomposition processes are favored. Among the ionic species, the photon-induced decomposition is dominated by BH+ and BH2+ fragment loss. Changes in ion yield associated with core to bound excitations are observed

    Multiscale characterization of chemical-mechanical interactions between polymer fibers and cementitious matrix

    Get PDF
    Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (mu CT). Experimental results.showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber-the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowed visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars

    Photoionization of the fullerene ion C60+

    Full text link
    Photoionization cross section of the fullerene ion C60+ has been calculated within a single-electron approximation and also by using a consistent many-body theory accounting for many-electron correlations.Comment: 8 pages, 3 figure

    X-ray absorption near edge structure spectroscopic study of Hayabusa category 3 carbonaceous particles

    Get PDF
    Analyses with a scanning transmission x-ray microscope (STXM) using x-ray absorption near edge structure (XANES) spectroscopy were applied for the molecular characterization of two kinds of carbonaceous particles of unknown origin, termed category 3, which were collected from the Hayabusa spacecraft sample catcher. Carbon-XANES spectra of the category 3 particles displayed typical spectral patterns of heterogeneous organic macromolecules; peaks corresponding to aromatic/olefinic carbon, heterocyclic nitrogen and/or nitrile, and carboxyl carbon were all detected. Nitrogen-XANES spectra of the particles showed the presence of N-functional groups such as imine, nitrile, aromatic nitrogen, amide, pyrrole, and amine. An oxygen-XANES spectrum of one of the particles showed a ketone group. Differences in carbon- and nitrogen-XANES spectra of the category 3 particles before and after transmission electron microscopic (TEM) observations were observed, which demonstrates that the carbonaceous materials are electron beam sensitive. Calcium-XANES spectroscopy and elemental contrast mapping identified a calcium carbonate grain from one of the category 3 particles. No fluorine-containing molecular species were detected in fluorine-XANES spectra of the particles. The organic macromolecular features of the category 3 particles were distinct from commercial and/or biological ‘fresh (non-degraded)’ polymers, but the category 3 molecular features could possibly reflect degradation of contaminant polymer materials or polymer materials used on the Hayabusa spacecraft. However, an extraterrestrial origin for these materials cannot currently be ruled out

    Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    Get PDF
    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode ​lithium iron phosphate (​LiFePO4; ​LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 ​LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in ​LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes
    • …
    corecore