5,641 research outputs found

    Stem Cells and DNA Damage: Persist or Perish?

    Get PDF
    Stem cells repopulate tissues after injury while also renewing themselves, but this makes them vulnerable to genotoxic damage. Mohrin et al. (2010) and Milyavsky et al. (2010) now show that mouse and human hematopoietic stem cells make opposing decisions about whether to die or to persist in response to DNA damage

    A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology

    Get PDF
    For aerodynamic modeling and optimization, it is desirable to limit the number of design variables to reduce model complexity and the requirements of the applied optimization scheme. The Class/Shape Transformation (CST) surface parameterization method presented by Kulfan has proven to be particularly useful for this while maintaining a wide range of applications. These include everything from smooth airfoils to 3D axi-symmetric bodies and wings. However, the CST method is confined to smooth geometries. This limits the CST method in applications incorporating discontinuous surfaces such as high lift aerodynamics with circulation control (CC) slots and flaps. The trailing edge slot on a circulation control wing (CCW) airfoil is not well modeled by the CST method. A parameterization of a CCW airfoil will result in the trailing edge slot being smoothed over. Therefore, a modified CST method must be utilized. For the case of parameterizing a known CCW airfoil, this is accomplished by detecting drastic changes in curvature and beginning a new parameterization in a multi-surface parameterization method. For creating a new CCW airfoil, this is achieved by modifying the 2D CST equations to incorporate a slot thickness term that also includes the horizontal location. These two methods can then be extended into 3D to model a circulation control wing (CCW) or even a blended wing body (BWB) aircraft incorporating CCW. The multi-surface parameterization modification can also be used to model other complex geometries to further enhance the robust nature of the CST method, thus creating a valuable design tool

    Calibration of Computational Models with Categorical Parameters and Correlated Outputs via Bayesian Smoothing Spline ANOVA

    Full text link
    It has become commonplace to use complex computer models to predict outcomes in regions where data does not exist. Typically these models need to be calibrated and validated using some experimental data, which often consists of multiple correlated outcomes. In addition, some of the model parameters may be categorical in nature, such as a pointer variable to alternate models (or submodels) for some of the physics of the system. Here we present a general approach for calibration in such situations where an emulator of the computationally demanding models and a discrepancy term from the model to reality are represented within a Bayesian Smoothing Spline (BSS) ANOVA framework. The BSS-ANOVA framework has several advantages over the traditional Gaussian Process, including ease of handling categorical inputs and correlated outputs, and improved computational efficiency. Finally this framework is then applied to the problem that motivated its design; a calibration of a computational fluid dynamics model of a bubbling fluidized which is used as an absorber in a CO2 capture system

    Carbon-13 in groundwater from English and Norwegian crystalline rock aquifers: a tool for deducing the origin of alkalinity?

    Get PDF
    The 13C signature is evaluated for various environmental compartments (vegetation, soils, soil gas, rock and groundwater) for three crystalline rock terrains in England and Norway. The data are used to evaluate the extent to which stable carbon isotopic data can be applied to deduce whether the alkalinity in crystalline bedrock groundwaters has its origin in hydrolysis of carbonate or silicate minerals by CO2. The resolution of this issue has profound implications for the role of weathering of crystalline rocks as a global sink for CO2. In the investigated English terrain (Isles of Scilly), groundwaters are hydrochemically immature and DIC is predominantly in the form of carbonic acid with a soil gas signature. In the Norwegian terrains, the evidence is not conclusive but is consistent with a significant fraction of the groundwater DIC being derived from silicate hydrolysis by CO2. A combined consideration of pH, alkalinity and carbon isotope data, plotted alongside theoretical evolutionary pathways on bivariate diagrams, strongly suggests real evolutionary pathways are likely to be hybrid, potentially involving both open and closed CO2 conditions

    The z=0.0912 and z=0.2212 Damped Lyman Alpha Galaxies Along the Sight-Line Toward the Quasar OI 363

    Full text link
    New optical and infrared observations along the sight-line toward the quasar OI 363 (0738+313) are presented and discussed. Excluding systems which lack confirming UV spectroscopic observations of the actual Lyman alpha line, this sight-line presently contains the two lowest-redshift classical damped Lyman alpha (DLA) quasar absorption line systems known (i.e. with N(HI) \ge 2 x 10^{20} atoms cm^{-2}), one at z(abs)=0.0912 and the other at z(abs)=0.2212. The z=0.09 DLA galaxy appears to be an extended low surface brightness galaxy which is easily visible only in infrared images and shows rich morphological structure. Subtraction of the quasar nuclear and host light yields L_K \approx 0.08L_K* at z=0.09. The impact parameter between the galaxy and quasar sight-line is very small, b<3.6 kpc (<2 arcsec), which makes measurements difficult. The z=0.22 DLA galaxy is an early-type dwarf with a K-band luminosity of L_K \approx 0.1L_K* at impact parameter b=20 kpc. In general, these results serve to support mounting evidence that DLA galaxies are drawn from a wide variety of gas-rich galaxy types. (Abridged)Comment: 27 pages, 6 figures, 2 in color. Submitted to Ap
    corecore