261 research outputs found
A Mode-Matching Technique for Analysis of Scattering by Periodic Comb Surfaces
Numerical techniques for calculating electromagnetic fields within three-dimensional surfaces are computationally intensive. Therefore, this paper presents the application of a mode-matching technique developed for analyzing electromagnetic scattering from periodic comb surfaces illuminated by a plane wave. A set of linear equations has been developed to calculate mode coefficients of the field distribution for both E- and H-polarized incident waves. Analysis is performed for two cases where the comb thickness is either infinitely thin or of a finite thickness. The technique is shown to accurately predict both field intensities within the near-field of the periodic surface and far-field scattering patterns. Results are compared to those obtained using the finite integration techniques (FIT) implemented in CST Microwave Studio. Furthermore, numerical results are compared to measurements of an aluminum prototype. Additional far-field scattering measurements using a bi-static system provide additional confidence in CST simulations and the mode-matching methods presented here
Motivation and Knowledge Sharing through Social Media within Danish Organizations
Part 3: Creating Value through ApplicationsInternational audienceBased on an empirical quantitative study, this article investigates employee motivation in Danish companies and aims at determining which factors affect employees’ knowledge sharing through social media in a working environment. Our findings pinpoint towards the potential social media have for enhancing internal communication, knowledge sharing and collaboration in organizations, but the adoption is low, at this point, due to mainly organizational and individual factors. Technological factors do not seem to affect employees’ motivation for knowledge sharing as much as previous research has found, but it is the influence from the combination of individual and organizational factors, which affect the adoption of the platforms. A key finding in the study is that knowledge sharing is not a ‘social dilemma’ as previous studies have found. The study shows a positive development in employees’ willingness to share knowledge, because knowledge sharing is considered more beneficial than to hoard it
Evidence for a narrow dip structure at 1.9 GeV/c in diffractive photoproduction
A narrow dip structure has been observed at 1.9 GeV/c in a study of
diffractive photoproduction of the final state performed by the
Fermilab experiment E687.Comment: The data of Figure 6 can be obtained by downloading the raw data file
e687_6pi.txt. v5 (2nov2018): added Fig. 7, the 6 pion energy distribution as
requested by a reade
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
Improved search for solar chameleons with a GridPix detector at CAST
We report on a new search for solar chameleons with the CERN Axion Solar Telescope (CAST). A GridPix detector was used to search for soft X-ray photons in the energy range from 200 eV to 10 keV from converted solar chameleons. No significant excess over the expected background has been observed in the data taken in 2014 and 2015. We set an improved limit on the chameleon photon coupling, beta(gamma) less than or similar to 5.7 x 10(10) for 1 < beta(m) < 10(6) at 95% C.L. improving our previous results by a factor two and for the first time reaching sensitivity below the solar luminosity bound for tachocline magnetic fields up to 12.5 T
The IAXO Helioscope
The IAXO (International Axion Experiment) is a fourth generation helioscope with a sensitivity, in terms of detectable signal counts, at least 104 better than CAST phase-I, resulting in sensitivity on ga¿ one order of magnitude better. To achieve this performance IAXO will count on a 8-coil toroidal magnet with 60 cm diameter bores and equipped with X-ray focusing optics into 0.20 cm2 spots coupled to ultra-low background Micromegas X-ray detectors. The magnet will be on a platform that will allow solar tracking for 12 hours per day. The next short term objectives are to prepare a Technical Design Report and to construct the first prototypes of the hardware main ingredients: demonstration coil, X-ray optics and low background detector while refining the physics case and studying the feasibility studies for Dark Matter axions
The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)
The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 \u2013 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling ga\u3b3 down to a few
710 1212 GeV 121 for a wide range of axion masses up to 3c 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor 3c 20 in the axion photon coupling. IAXO's sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into 3c 0.2 cm2 spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1], [2] and [3] and we refer to these for further details
- …