9,827 research outputs found

    On non-Hamiltonian circulant digraphs of outdegree three

    Full text link
    We construct infinitely many connected, circulant digraphs of outdegree three that have no hamiltonian circuit. All of our examples have an even number of vertices, and our examples are of two types: either every vertex in the digraph is adjacent to two diametrically opposite vertices, or every vertex is adjacent to the vertex diametrically opposite to itself

    A study of the ozonolysis of isoprene in a cryogenic buffer gas cell by high resolution microwave spectroscopy

    Full text link
    We have developed a method to quantify reaction product ratios using high resolution microwave spectroscopy in a cryogenic buffer gas cell. We demonstrate the power of this method with the study of the ozonolysis of isoprene, CH2=C(CH3)-CH=CH2, the most abundant, non-methane hydrocarbon emitted into the atmosphere by vegetation. Isoprene is an asymmetric diene, and reacts with O3 at the 1,2 position to produce methyl vinyl ketone (MVK), formaldehyde, and a pair of carbonyl oxides: [CH3CO-CH=CH2 + CH2=OO] + [CH2=O + CH3COO-CH=CH2]. Alternatively, O3 could attack at the 3,4 position to produce methacrolein (MACR), formaldehyde, and two carbonyl oxides [CH2=C(CH3)-CHO + CH2=OO] + [CH2=O + CH2=C(CH3)-CHOO]. Purified O3 and isoprene were mixed for approximately 10 seconds under dilute (1.5-4% in argon) continuous flow conditions in an alumina tube held at 298 K and 5 Torr. Products exiting the tube were rapidly slowed and cooled within the buffer gas cell by collisions with cryogenic (4-7 K) He. High resolution chirped pulse microwave detection between 12 and 26 GHz was used to achieve highly sensitive (ppb scale), isomer-specific product quantification. We observed a ratio of MACR to MVK of 2.1 +/- 0.4 under 1:1 ozone to isoprene conditions and 2.1 +/- 0.2 under 2:1 ozone to isoprene conditions, a finding which is consistent with previous experimental results. Additionally, we discuss relative quantities of formic acid (HCOOH), an isomer of CH2=OO, and formaldehyde (CH2=O) under varying experimental conditions, and characterize the spectroscopic parameters of the singly-substituted 13C trans-isoprene and 13C anti-periplanar-methacrolein species. This work has the potential to be extended towards a complete branching ratio analysis, as well towards the ability to isolate, identify, and quantify new reactive intermediates in the ozonolysis of alkenes

    FeatherSail - The Next Generation Nano-Class Sail Vehicle

    Get PDF
    Solar sail propulsion is a concept, which will soon become a reality. Solar sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. Solar sail vehicles have generally been designed to have a very large area. This requires significant time and expenditures to develop, test and launch such a vehicle. Several notable solar propulsion missions and experiments have been performed and more are still in the development stage. This concept will be tested in the near future with the launch of the NanoSail-D satellite. NanoSail-D is a nano-class satellite, less than 10kg, which will deploy a thin lightweight sheet of reflective material used to propel the satellite in its low earth orbit. The NanoSail-D solar sail design is used for the basic design concept for the next generation of nanoclass solar sail vehicles. The FeatherSail project was started to develop a solar sail vehicle with the capability to perform attitude control via rotating or feathering the solar sails. In addition to using the robust deployment method of the NanoSail-D system, the FeatherSail design incorporates other novel technologies. These technologies include deployable thin film solar arrays and low power, low temperature Silicon-Germanium electronics. Together, these three technological advancements provide a starting point for smaller class sail vehicles. These smaller solar sail vehicles provide a capability for inexpensive missions to explore beyond the realms of low earth orbit

    Structured representation for requirements and specifications

    Get PDF
    This document was generated in support of NASA contract NAS1-18586, Design and Validation of Digital Flight Control Systems suitable for Fly-By-Wire Applications, Task Assignment 2. Task 2 is associated with a formal representation of requirements and specifications. In particular, this document contains results associated with the development of a Wide-Spectrum Requirements Specification Language (WSRSL) that can be used to express system requirements and specifications in both stylized and formal forms. Included with this development are prototype tools to support the specification language. In addition a preliminary requirements specification methodology based on the WSRSL has been developed. Lastly, the methodology has been applied to an Advanced Subsonic Civil Transport Flight Control System

    Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf of Mexico

    Get PDF
    Seeps of free methane gas escaping the seabed can be found throughout the ocean basins. To understand the role of methane gas seeps in the global carbon cycle—including both gas added to the atmosphere and that which is dissolved and potentially oxidized in the ocean volume—it is important to quantify the amount of methane escaping the seabed. Few large-scale mapping projects of natural methane seeps have been undertaken, however, and even among these, quantitative estimates of flux are rare. Here we use acoustic mapping techniques to survey 357 natural methane seeps in a large region (6000 km2) of the northern Gulf of Mexico and outline a general approach for methane seep mapping using a combination of multibeam and split-beam echo sounders. Using additional measurements collected with a remotely operated vehicle (ROV) together with the acoustic mapping results, we estimate the total gas flux within the 6000 km2 region to be between 0.0013 and 0.16 Tg/yr, or between 0.003 and 0.3% of the current estimates for global seabed methane seepage rates

    Acoustic and optical observations of methane gas seeps in the Gulf of Mexico

    Get PDF
    In 2011 and 2012, measurements of acoustic backscatter from natural methane seeps were made in the northern Gulf of Mexico in water depths between 1000-2000 m. The measurementswere made using a calibrated 18 kHz echo sounder with an 11 degree beamwidth in order to estimate the depth-dependent target strength (TS). The TS data indicate a wide variation in the rate of gas seepage from the seafloor. Several of these seeps were revisited with a remotely operated vehicle in order to optically assess the bubble size distribution and to estimate the rate at which gas bubbles were exiting the seafloor. The optical data show bubble sizes between 1-10 mm radius, and similar rates of gas seepage ranging from a few bubbles per second to several tens of bubbles per second. Together, these data help to suggest the requirements for acoustically estimating gas flux from the seafloor over large regions

    Evaluation of inertial devices for the control of large, flexible, space-based telerobotic arms

    Get PDF
    Inertial devices, including sensors and actuators, offer the potential of improving the tracking of telerobotic commands for space-based robots by smoothing payload motions and suppressing vibrations. In this paper, inertial actuators (specifically, torque-wheels and reaction-masses) are studied for that potential application. Batch simulation studies are presented which show that torque-wheels can reduce the overshoot in abrupt stop commands by 82 percent for a two-link arm. For man-in-the-loop evaluation, a real-time simulator has been developed which samples a hand-controller, solves the nonlinear equations of motion, and graphically displays the resulting motion on a computer workstation. Currently, two manipulator models, a two-link, rigid arm and a single-link, flexible arm, have been studied. Results are presented which show that, for a single-link arm, a reaction-mass/torque-wheel combination at the payload end can yield a settling time of 3 s for disturbances in the first flexible mode as opposed to 10 s using only a hub motor. A hardware apparatus, which consists of a single-link, highly flexible arm with a hub motor and a torque-wheel, has been assembled to evaluate the concept and is described herein
    • â€Ķ
    corecore