1,653 research outputs found

    TGFĪ²1 orchestrates renal fibrosis following Escherichia coli pyelonephritis

    Get PDF
    Renal scarring after pyelonephritis is linked to long-term health risks for hypertension and chronic kidney disease. Androgen exposure increases susceptibility to, and severity of, uropathogenic Escherichia coli (UPEC) pyelonephritis and resultant scarring in both male and female mice, while anti-androgen therapy is protective against severe urinary tract infection (UTI) in these models. This work employed androgenized female C57BL/6 mice to elucidate the molecular mechanisms of post-infectious renal fibrosis and to determine how these pathways are altered by the presence of androgens. We found that elevated circulating testosterone levels primed the kidney for fibrosis by increasing local production of TGFĪ²1 before the initiation of UTI, altering the ratio of transcription factors Smad2 and Smad3 and increasing the presence of mesenchymal stem cell (MSC)-like cells and Gli1 + activated myofibroblasts, the cells primarily responsible for deposition of scar components. Increased production of TGFĪ²1 and aberrations in Smad2:Smad3 were maintained throughout the course of infection in the presence of androgen, correlating with renal scarring that was not observed in non-androgenized female mice. Pharmacologic inhibition of TGFĪ²1 signaling blunted myofibroblast activation. We conclude that renal fibrosis after pyelonephritis is exacerbated by the presence of androgens and involves activation of the TGFĪ²1 signaling cascade, leading to increases in cortical populations of MSC-like cells and the Gli1 + activated myofibroblasts that are responsible for scarring

    Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoEāˆ’/āˆ’ mice

    Get PDF
    AngII (angiotensin II) induces atherosclerosis and AAAs (abdominal aortic aneurysms) through multiple proposed mechanisms, including chemotaxis. Therefore, we determined the effects of whole-body deficiency of the chemokine receptor CCR2 (CC chemokine receptor 2) on these diseases. To meet this objective, apoE (apolipoprotein E)āˆ’/āˆ’ mice that were either CCR2+/+ or CCR2āˆ’/āˆ’, were infused with either saline or AngII (1000Ā ngĀ·kgāˆ’1 of body weightĀ·mināˆ’1) for 28Ā days via mini-osmotic pumps. Deficiency of CCR2 markedly attenuated both atherosclerosis and AAAs, unrelated to systolic blood pressure or plasma cholesterol concentrations. During the course of the present study, we also observed that AngII infusion led to large dilatations that were restricted to the ascending aortic region of apoEāˆ’/āˆ’ mice. The aortic media in most of the dilated area was thickened. In regions of medial thickening, distinct elastin layers were discernable. There was an expansion of the distance between elastin layers in a gradient from the intimal to the adventitial aspect of the media. This pathology differed in a circumscribed area of the anterior region of ascending aortas in which elastin breaks were focal and almost transmural. All regions of the ascending aorta of AngII-infused mice had diffuse medial macrophage accumulation. Deficiency of CCR2 greatly attenuated the AngII-induced lumen dilatation in the ascending aorta. This new model of ascending aortic aneurysms has pathology that differs markedly from AngII-induced atherosclerosis or AAAs, but all vascular pathologies were attenuated by CCR2 deficiency

    Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library

    Get PDF
    The utility of blue fluorescent protein (BFP) has been limited by its low quantum yield and rapid photobleaching. A library targeting residues neighboring the chromophore yielded a variant with enhanced quantum yield (0.55 versus 0.34), reduced pH sensitivity and a 40-fold increase in photobleaching half-life. This BFP, named Azurite, is well expressed in bacterial and mammalian cells and extends the palette of fluorescent proteins that can be used for imaging

    PD123319 augments angiotensin II-induced abdominal aortic aneurysms through an AT2 receptor-independent mechanism

    Get PDF
    BACKGROUND: AT2 receptors have an unclear function on development of abdominal aortic aneurysms (AAAs), although a pharmacological approach using the AT2 receptor antagonist PD123319 has implicated a role. The purpose of the present study was to determine the role of AT2 receptors in AngII-induced AAAs using a combination of genetic and pharmacological approaches. We also defined effects of AT2 receptors in AngII-induced atherosclerosis and thoracic aortic aneurysms. METHODS AND RESULTS: Male AT2 receptor wild type (AT2 +/y) and deficient (AT2 -/y) mice in an LDL receptor -/- background were fed a saturated-fat enriched diet, and infused with either saline or AngII (500 ng/kg/min). AT2 receptor deficiency had no significant effect on systolic blood pressure during AngII-infusion. While AngII infusion induced AAAs, AT2 receptor deficiency did not significantly affect either maximal width of the suprarenal aorta or incidence of AAAs. The AT2 receptor antagonist PD123319 (3 mg/kg/day) and AngII were co-infused into male LDL receptor -/- mice that were either AT2 +/y or -/y. PD123319 had no significant effect on systolic blood pressure in either wild type or AT2 receptor deficient mice. Consistent with our previous findings, PD123319 increased AngII-induced AAAs. However, this effect of PD123319 occurred irrespective of AT2 receptor genotype. Neither AT2 receptor deficiency nor PD123319 had any significant effect on AngII-induced thoracic aortic aneurysms or atherosclerosis. CONCLUSIONS: AT2 receptor deficiency does not affect AngII-induced AAAs, thoracic aortic aneurysms and atherosclerosis. PD123319 augments AngII-induced AAAs through an AT2 receptor-independent mechanism

    The Fern Genus Acrostichum in the Eocene Clarno Formation of Oregon

    Full text link
    205-227http://deepblue.lib.umich.edu/bitstream/2027.42/48376/2/ID220.pd

    A Fossil Dennstaedtioid Fern from the Eocene Clarno Formation of Oregon

    Full text link
    65-88http://deepblue.lib.umich.edu/bitstream/2027.42/48385/2/ID230.pd

    Dysregulated NK cell PLCĪ³2 signaling and activity in juvenile dermatomyositis

    Get PDF
    Juvenile dermatomyositis (JDM) is a debilitating pediatric autoimmune disease manifesting with characteristic rash and muscle weakness. To delineate signaling abnormalities in JDM, mass cytometry was performed with PBMCs from treatment-naive JDM patients and controls. NK cell percentages were lower while frequencies of naive B cells and naive CD4+ T cells were higher in JDM patients than in controls. These cell frequency differences were attenuated with cessation of active disease. A large number of signaling differences were identified in treatment-naive JDM patients compared with controls. Classification models incorporating feature selection demonstrated that differences in phospholipase CĪ³2 (PLCĪ³2) phosphorylation comprised 10 of 12 features (i.e., phosphoprotein in a specific immune cell subset) distinguishing the 2 groups. Because NK cells represented 5 of these 12 features, further studies focused on the PLCĪ³2 pathway in NK cells, which is responsible for stimulating calcium flux and cytotoxic granule movement. No differences were detected in upstream signaling or total PLCĪ³2 protein levels. Hypophosphorylation of PLCĪ³2 and downstream mitogen-activated protein kinase-activated protein kinase 2 were partially attenuated with cessation of active disease. PLCĪ³2 hypophosphorylation in treatment-naive JDM patients resulted in decreased calcium flux. The identification of dysregulation of PLCĪ³2 phosphorylation and decreased calcium flux in NK cells provides potential mechanistic insight into JDM pathogenesis

    Synergistic drug combinations from electronic health records and gene expression.

    Get PDF
    ObjectiveUsing electronic health records (EHRs) and biomolecular data, we sought to discover drug pairs with synergistic repurposing potential. EHRs provide real-world treatment and outcome patterns, while complementary biomolecular data, including disease-specific gene expression and drug-protein interactions, provide mechanistic understanding.MethodWe applied Group Lasso INTERaction NETwork (glinternet), an overlap group lasso penalty on a logistic regression model, with pairwise interactions to identify variables and interacting drug pairs associated with reduced 5-year mortality using EHRs of 9945 breast cancer patients. We identified differentially expressed genes from 14 case-control human breast cancer gene expression datasets and integrated them with drug-protein networks. Drugs in the network were scored according to their association with breast cancer individually or in pairs. Lastly, we determined whether synergistic drug pairs found in the EHRs were enriched among synergistic drug pairs from gene-expression data using a method similar to gene set enrichment analysis.ResultsFrom EHRs, we discovered 3 drug-class pairs associated with lower mortality: anti-inflammatories and hormone antagonists, anti-inflammatories and lipid modifiers, and lipid modifiers and obstructive airway drugs. The first 2 pairs were also enriched among pairs discovered using gene expression data and are supported by molecular interactions in drug-protein networks and preclinical and epidemiologic evidence.ConclusionsThis is a proof-of-concept study demonstrating that a combination of complementary data sources, such as EHRs and gene expression, can corroborate discoveries and provide mechanistic insight into drug synergism for repurposing
    • ā€¦
    corecore