21 research outputs found

    Detailed study of the ELAIS N1 field with the uGMRT - I. Characterizing the 325 MHz foreground for redshifted 21 cm observations

    Get PDF
    In this first paper of the series, we present initial results of newly upgraded Giant Meterwave Radio Telescope (uGMRT) observation of European Large-Area ISO Survey-North 1 (ELAIS-N1) at 325 MHz with 32 MHz bandwidth. Precise measurement of fluctuations in Galactic and extragalactic foreground emission as a function of frequency as well as angular scale is necessary for detecting redshifted 21-cm signal of neutral hydrogen from Cosmic Dawn, Epoch of Reionization (EoR) and post-reionization epoch. Here, for the first time we have statistically quantified the Galactic and extragalactic foreground sources in the ELAIS-N1 field in the form of angular power spectrum using the newly developed Tapered Gridded Estimator (TGE). We have calibrated the data with and without direction-dependent calibration techniques. We have demonstrated the effectiveness of TGE against the direction dependent effects by using higher tapering of field of view (FoV). We have found that diffuse Galactic synchrotron emission (DGSE) dominates the sky, after point source subtraction, across the angular multipole range 1115⩽ℓ⩽5083 1115 \leqslant \mathcal{\ell} \leqslant 5083 and 1565⩽ℓ⩽4754 1565 \leqslant \mathcal{\ell} \leqslant 4754 for direction-dependent and -independent calibrated visibilities respectively. The statistical fluctuations in DGSE has been quantified as a power law of the form Cℓ=Aℓ−β\mathcal{C}_{\mathcal{\ell}}= A \mathcal{\ell}^{-\beta} . The best fitted values of (A, β\beta) are (62±6 62 \pm 6 mK2mK^{2}, 2.55±0.32.55 \pm 0.3 ) and (48±4 48 \pm 4 mK2mK^{2}, 2.28±0.42.28 \pm 0.4 ) for the two different calibration approaches. For both the cases, the power law index is consistent with the previous measurements of DGSE in other parts of sky.Comment: 13 pages, 5figures, 4 tables; accepted for publication in MNRA

    Cross-correlation of the HI 21-cm Signal and Lyman-alpha Forest: A Probe Of Cosmology

    Full text link
    Separating the cosmological redshifted 21-cm signal from foregrounds is a major challenge. We present the cross-correlation of the redshifted 21-cm emission from neutral hydrogen (HI) in the post-reionization era with the Ly-alpha forest as a new probe of the large scale matter distribution in the redshift range z=2 to 3 without the problem of foreground contamination. Though the 21-cm and the Ly-alpha forest signals originate from different astrophysical systems, they are both expected to trace the underlying dark matter distribution on large scales. The multi-frequency angular cross-correlation power spectrum estimator is found to be unaffected by the discrete quasar sampling, which only affects the noise in the estimate. We consider a hypothetical redshifted 21-cm observation in a single field of view 1.3 degrees (FWHM) centered at z=2.2 where the binned 21-cm angular power spectrum can be measured at an SNR of 3 sigma or better across the range 500 < l < 4000 . Keeping the parameters of the 21-cm observation fixed, we have estimated the SNR for the cross-correlation signal varying the quasar angular number density n of the Ly-alpha forest survey. Assuming that the spectra have SNR ~5 in pixels of length 44 km/s, we find that a 5 sigma detection of the cross-correlation signal is possible at 600 < l < 2000 with n=4 deg^{-2}. This value of n is well within the reach of upcoming Ly-alpha forest surveys. The cross-correlation signal will be a new, independent probe of the astrophysics of the diffuse IGM, the growth of structure and the expansion history of the Universe.Comment: Revised paper, accepted to MNRA

    Constraining large scale HI bias using redshifted 21-cm signal from the post-reionization epoch

    Full text link
    In the absence of complex astrophysical processes that characterize the reionization era, the 21-cm emission from neutral hydrogen (HI) in the post-reionization epoch is believed to be an excellent tracer of the underlying dark matter distribution. Assuming a background cosmology, it is modelled through (i) a bias function b(k,z), which relates HI to the dark matter distribution and (ii) a mean neutral fraction (x_{HI}) which sets its amplitude. In this paper, we investigate the nature of large scale HI bias. The post-reionization HI is modelled using gravity only N-Body simulations and a suitable prescription for assigning gas to the dark matter halos. Using the simulated bias as the fiducial model for HI distribution at z\leq 4, we have generated a hypothetical data set for the 21-cm angular power spectrum (C_{l}) using a noise model based on parameters of an extended version of the GMRT. The binned C_{l} is assumed to be measured with SNR \gtrsim 4 in the range 400 \leq l \leq 8000 at a fiducial redshift z=2.5. We explore the possibility of constraining b(k) using the Principal Component Analysis (PCA) on this simulated data. Our analysis shows that in the range 0.2 < k < 2 Mpc^{-1}, the simulated data set cannot distinguish between models exhibiting different k dependences, provided 1 \lesssim b(k) \lesssim 2 which sets the 2-sigma limits. This justifies the use of linear bias model on large scales. The largely uncertain x_{HI} is treated as a free parameter resulting in degradation of the bias reconstruction. The given simulated data is found to constrain the fiducial x_{HI} with an accuracy of \sim 4% (2-sigma error). The method outlined here, could be successfully implemented on future observational data sets to constrain b(k,z) and x_{HI} and thereby enhance our understanding of the low redshift Universe.Comment: 10 pages, 11 figures, 2 tables. Accepted in MNRAS. Revised to match the accepted versio
    corecore