233 research outputs found

    Flibanserin and 8‐OH‐DPAT Implicate Serotonin in Association between Female Marmoset Monkey Sexual Behavior and Changes in Pair‐Bond Quality

    Full text link
    Introduction.  Psychopathological origins of personally distressing, hypoactive sexual desire disorder (HSDD) in women are unknown, but are generally attributed to an inhibitory neural regulator, serotonin (5‐HT). Flibanserin, a 5‐HT 1A agonist and 5‐HT 2A antagonist, shows promise as a treatment for HSDD. Aim.  To test the hypothesis that female marmoset sexual behavior is enhanced by flibanserin and diminished by 8‐OH‐DPAT, in order to evaluate the efficacy of serotonergic modulation of female sexual behavior in a pairmate social setting comparable to humans. Methods.  Sexual and social behavior were examined in eight female marmoset monkeys receiving daily flibanserin (15 mg/kg), 8‐OH‐DPAT (0.1 mg/kg), or corresponding vehicle for 15–16 weeks in a counterbalanced, within‐subject design, while housed in long‐term, stable male–female pairs. Main Outcome Measures.  Marmoset pairmate interactions, including sexual and social behavior, were scored during weeks 5–6 of daily flibanserin, 8‐OH‐DPAT or vehicle treatment. 24‐hour pharmacokinetic profiles of the drugs and their metabolites, as well as drug‐induced acute symptoms of the 5‐HT behavioral syndrome were also assessed. Results.  Two‐way analysis of variance reveals that flibanserin‐treated females attract more male sexual interest ( P  = 0.020) and trigger increased grooming ( P  = 0.001) between partners. In contrast, 8‐OH‐DPAT‐treated females show increased rejection of male sexual advances ( P  = 0.024), a tendency for decreased male sexual interest ( P  = 0.080), and increased aggression with their male pairmates ( P  = 0.049). Conclusions.  While 8‐OH‐DPAT‐treated female marmosets display decreased sexual receptivity and increased aggressive interactions with their male pairmates, flibanserin‐treated female marmosets demonstrate increased affiliative behavior with their male pairmates. Such pro‐affiliation attributes may underlie flibanserin's effectiveness in treating HSDD in women. Aubert Y, Gustison ML, Gardner LA, Bohl MA, Lange JR, Allers KA, Sommer B, Datson NA, and Abbott DH. Flibanserin and 8‐OH‐DPAT implicate serotonin in association between female marmoset monkey sexual behavior and changes in pair‐bond quality. J Sex Med 2012;9:694–707.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90344/1/j.1743-6109.2011.02616.x.pd

    Paired hormone response elements predict caveolin-1 as a glucocorticoid target gene

    Get PDF
    Abstract Glucocorticoids act in part via glucocortocoid receptor binding to hormone response elements (HREs), but their direct target genes in vivo are still largely unknown. We developed the criterion that genomic occurrence of paired HREs at an inter-HRE distance less than 200 bp predicts hormone responsiveness, based on synergy of multiple HREs, and HRE information from known target genes. This criterion predicts a substantial number of novel responsive genes, when applied to genomic regions 10 kb upstream of genes. Multiple-tissue in situ hybridization showed that mRNA expression of 6 out of 10 selected genes was induced in a tissue-specific manner in mice treated with a single dose of corticosterone, with the spleen being the most responsive organ. Caveolin-1 was strongly responsive in several organs, and the HRE pair in its upstream region showed increased occupancy by glucocorticoid receptor in response to corticosterone. Our approach allowed for discovery of novel tissue specific glucocorticoid target genes, which may exemplify responses underlying the permissive actions of glucocorticoids

    Evaluation of Affymetrix Gene Chip sensitivity in rat hippocampal tissue using SAGE analysis *

    Full text link
    DNA microarrays are a powerful tool for monitoring thousands of transcript levels simultaneously. However, the use of DNA microarrays in studying the central nervous system faces several challenges. These include the detection of low-abundance transcripts in highly complex tissue as well as estimating relatively low-magnitude changes in transcript levels in response to experimental manipulation. Many transcripts important to brain function have low expression levels or are expressed in relatively few cells, making them difficult to detect in the complex background of brain tissue. The aim of the present study is to evaluate the sensitivity of Gene Chip detection of transcripts in brain by using results from serial analysis of gene expression (SAGE) studies. The results of this comparison indicate that Affymetrix Gene Chips, like SAGE, only reliably detect medium- to high-abundance transcripts and that detection of low-abundance transcripts, many of which have great relevance to biological function in brain, is inconsistent. Specifically, we estimate that Gene Chips reliably detect no more than 30% of the hippocampal transcriptome when using a gross hippocampal dissection as the source tissue. This report provides the first broad evaluation of Affymetrix Gene Chip sensitivity relevant to studying the brain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75717/1/j.1460-9568.2002.02097.x.pd

    VLT/X-shooter spectroscopy of the afterglow of the Swift GRB 130606A: Chemical abundances and reionisation at z6z\sim6

    Get PDF
    The reionisation of the Universe is thought to have ended around z~6, as inferred from spectroscopy of distant bright background sources, such as quasars (QSO) and gamma-ray burst (GRB) afterglows. Furthermore, spectroscopy of a GRB afterglow provides insight in its host galaxy, which is often too dim and distant to study otherwise. We present the high S/N VLT/X-shooter spectrum of GRB130606A at z=5.913. We aim to measure the degree of ionisation of the IGM between 5.02<z<5.84 and to study the chemical abundance pattern and dust content of its host galaxy. We measured the flux decrement due to absorption at Lyα\alpha, β\beta and γ\gamma wavelength regions. The hydrogen and metal absorption lines formed in the host galaxy were fitted with Voigt profiles to obtain column densities. Our measurements of the Lyα\alpha-forest optical depth are consistent with previous measurements of QSOs, but have a much smaller uncertainty. The analysis of the red damping wing yields a neutral fraction xHI<0.05x_{HI}<0.05 (3σ\sigma). We obtain column density measurements of several elements. The ionisation corrections due to the GRB is estimated to be negligible (<0.03 dex), but larger corrections may apply due to the pre-existing radiation field (up to 0.4 dex based on sub-DLA studies). Our measurements confirm that the Universe is already predominantly ionised over the redshift range probed in this work, but was slightly more neutral at z>5.6. GRBs are useful probes of the ionisation state of the IGM in the early Universe, but because of internal scatter we need a larger statistical sample to draw robust conclusions. The high [Si/Fe] in the host can be due to dust depletion, alpha-element enhancement, or a combination of both. The very high value of [Al/Fe]=2.40+/-0.78 might connected to the stellar population history. We estimate the host metallicity to be -1.7<[M/H]<-0.9 (2%-13% of solar). (trunc.)Comment: 15 pages, 12 figure

    A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Actinidia </it>(kiwifruit) consists of woody, scrambling vines, native to China, and only recently propagated as a commercial crop. All species described are dioecious, but the genetic mechanism for sex-determination is unknown, as is the genetic basis for many of the cluster of characteristics making up the unique fruit. It is, however, an important crop in the New Zealand economy, and a classical breeding program would benefit greatly by knowledge of the trait alleles carried by both female and male parents. The application of marker assisted selection (MAS) in seedling populations would also aid the accurate and efficient development of novel fruit types for the market.</p> <p>Results</p> <p>Gene-rich female, male and consensus linkage maps of the diploid species <it>A. chinensis </it>have been constructed with 644 microsatellite markers. The maps consist of twenty-nine linkage groups corresponding to the haploid number n = 29. We found that sex-linked sequence characterized amplified region (SCAR) markers and the 'Flower-sex' phenotype consistently mapped to a single linkage group, in a subtelomeric region, in a section of inconsistent marker order. The region also contained markers of expressed genes, some of unknown function. Recombination, assessed by allelic distribution and marker order stability, was, in the remainder of the linkage group, in accordance with other linkage groups. Fully informative markers to other genes in this linkage group identified the comparative linkage group in the female map, where recombination ratios determining marker order were similar to the autosomes.</p> <p>Conclusion</p> <p>We have created genetic linkage maps that define the 29 linkage groups of the haploid genome, and have revealed the position and extent of the sex-determining locus in <it>A. chinensis</it>. As all <it>Actinidia </it>species are dioecious, we suggest that the sex-determining loci of other <it>Actinidia </it>species will be similar to that region defined in our maps. As the extent of the non-recombining region is limited, our result supports the suggestion that the subtelomeric region of an autosome is in the early stages of developing the characteristics of a sex chromosome. The maps provide a reference of genetic information in <it>Actinidia </it>for use in genetic analysis and breeding programs.</p

    Development of the first marmoset-specific DNA microarray (EUMAMA): a new genetic tool for large-scale expression profiling in a non-human primate

    Get PDF
    Contains fulltext : 34911.pdf (publisher's version ) (Open Access)BACKGROUND: The common marmoset monkey (Callithrix jacchus), a small non-endangered New World primate native to eastern Brazil, is becoming increasingly used as a non-human primate model in biomedical research, drug development and safety assessment. In contrast to the growing interest for the marmoset as an animal model, the molecular tools for genetic analysis are extremely limited. RESULTS: Here we report the development of the first marmoset-specific oligonucleotide microarray (EUMAMA) containing probe sets targeting 1541 different marmoset transcripts expressed in hippocampus. These 1541 transcripts represent a wide variety of different functional gene classes. Hybridisation of the marmoset microarray with labelled RNA from hippocampus, cortex and a panel of 7 different peripheral tissues resulted in high detection rates of 85% in the neuronal tissues and on average 70% in the non-neuronal tissues. The expression profiles of the 2 neuronal tissues, hippocampus and cortex, were highly similar, as indicated by a correlation coefficient of 0.96. Several transcripts with a tissue-specific pattern of expression were identified. Besides the marmoset microarray we have generated 3215 ESTs derived from marmoset hippocampus, which have been annotated and submitted to GenBank [GenBank: EF214838-EF215447, EH380242-EH382846]. CONCLUSION: We have generated the first marmoset-specific DNA microarray and demonstrated its use to characterise large-scale gene expression profiles of hippocampus but also of other neuronal and non-neuronal tissues. In addition, we have generated a large collection of ESTs of marmoset origin, which are now available in the public domain. These new tools will facilitate molecular genetic research into this non-human primate animal model

    Paired Hormone Response Elements Predict Caveolin-1 as a Glucocorticoid Target Gene

    Get PDF
    Glucocorticoids act in part via glucocortocoid receptor binding to hormone response elements (HREs), but their direct target genes in vivo are still largely unknown. We developed the criterion that genomic occurrence of paired HREs at an inter-HRE distance less than 200 bp predicts hormone responsiveness, based on synergy of multiple HREs, and HRE information from known target genes. This criterion predicts a substantial number of novel responsive genes, when applied to genomic regions 10 kb upstream of genes. Multiple-tissue in situ hybridization showed that mRNA expression of 6 out of 10 selected genes was induced in a tissue-specific manner in mice treated with a single dose of corticosterone, with the spleen being the most responsive organ. Caveolin-1 was strongly responsive in several organs, and the HRE pair in its upstream region showed increased occupancy by glucocorticoid receptor in response to corticosterone. Our approach allowed for discovery of novel tissue specific glucocorticoid target genes, which may exemplify responses underlying the permissive actions of glucocorticoids

    A molecular signature of epithelial host defense: comparative gene expression analysis of cultured bronchial epithelial cells and keratinocytes

    Get PDF
    BACKGROUND: Epithelia are barrier-forming tissues that protect the organism against external noxious stimuli. Despite the similarity in function of epithelia, only few common protective mechanisms that are employed by these tissues have been systematically studied. Comparative analysis of genome-wide expression profiles generated by means of Serial Analysis of Gene Expression (SAGE) is a powerful approach to yield further insight into epithelial host defense mechanisms. We performed an extensive comparative analysis of previously published SAGE data sets of two types of epithelial cells, namely bronchial epithelial cells and keratinocytes, in which the response to pro-inflammatory cytokines was assessed. These data sets were used to elucidate a common denominator in epithelial host defense. RESULTS: Bronchial epithelial cells and keratinocytes were found to have a high degree of overlap in gene expression. Using an in silico approach, an epithelial-specific molecular signature of gene expression was identified in bronchial epithelial cells and keratinocytes comprising of family members of keratins, small proline-rich proteins and proteinase inhibitors. Whereas some of the identified genes were known to be involved in inflammation, the majority of the signature represented genes that were previously not associated with host defense. Using polymerase chain reaction, presence of expression of selected tissue-specific genes was validated. CONCLUSION: Our comparative analysis of gene transcription reveals that bronchial epithelial cells and keratinocytes both express a subset of genes that is likely to be essential in epithelial barrier formation in these cell types. The expression of these genes is specific for bronchial epithelial cells and keratinocytes and is not seen in non-epithelial cells. We show that bronchial epithelial cells, similar to keratinocytes, express components that are able to form a cross-linked protein envelope that may contribute to an effective barrier against noxious stimuli and pathogens

    Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions

    Get PDF
    Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone recep
    corecore