127 research outputs found

    The potential of satellite-observed crop phenology to enhance yield gap assessments in smallholder landscapes

    Get PDF
    Many of the undernourished people on the planet obtain their entitlements to food via agricultural-based livelihood strategies, often on underperforming croplands and smallholdings. In this context, expanding cropland extent is not a viable strategy for smallholders to meet their food needs. Therefore, attention must shift to increasing productivity on existing plots and ensuring yield gaps do not widen. Thus, supporting smallholder farmers to sustainably increase the productivity of their lands is one part of a complex solution to realizing universal food security. However, the information (e.g., location and causes of cropland underperformance) required to support measures to close yield gaps in smallholder landscapes are often not available. This paper reviews the potential of crop phenology, observed from satellites carrying remote sensing sensors, to fill this information gap. It is suggested that on a theoretical level phenological approaches can reveal greater intra-cropland thematic detail, and increase the accuracy of crop extent maps and crop yield estimates. However, on a practical level the spatial mismatch between the resolution at which crop phenology can be estimated from satellite remote sensing data and the scale of yield variability in smallholder croplands inhibits its use in this context. Similarly, the spatial coverage of remote sensing-derived phenology offers potential for integration with ancillary spatial datasets to identify causes of yield gaps. To reflect the complexity of smallholder cropping systems requires ancillary datasets at fine spatial resolutions which, often, are not available. This further precludes the use of crop phenology in attempts to unpick the causes of yield gaps. Research agendas should focus on generating fine spatial resolution crop phenology, either via data fusion or through new sensors (e.g., Sentinel-2) in smallholder croplands. This has potential to transform the applied use of remote sensing in this context

    Major trends in the land surface phenology (LSP) of Africa, controlling for land cover change

    Get PDF
    Monitoring land surface phenology (LSP) trends is important in understanding how both climatic and non-climatic factors influence vegetation growth and dynamics. Controlling for land-cover changes in these analyses has been undertaken only rarely, especially in poorly studied regions like Africa. Using regression models and controlling for land-cover changes, this study estimated LSP trends for Africa from the enhanced vegetation index (EVI) derived from 500 m surface reflectance Moderate-Resolution Imaging Spectroradiometer (MOD09A1), for the period from 2001 to 2015. Overall end of season showed slightly more pixels with significant trends (12.9% of pixels) than start of season (11.56% of pixels) and length of season (LOS) (5.72% of pixels), leading generally to more ‘longer season’ LOS trends. Importantly, LSP trends that were not affected by land-cover changes were distinguished from those that were influenced by land-cover changes such as to map LSP changes that have occurred within stable land-cover classes and which might, therefore, be reasonably associated with climate changes through time. As expected, greater slope magnitudes were observed more frequently for pixels with land-cover changes compared to those without, indicating the importance of controlling for land cover. Consequently, we suggest that future analyses of LSP trends should control for land-cover changes such as to isolate LSP trends that are solely climate-driven and/or those influenced by other anthropogenic activities or a combination of both

    Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index Over a Vineyard Dominated Mediterranean Environment

    Full text link
    [EN] Continuity to the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) will be provided by the Ocean and Land Color Instrument (OLCI) on-board the Sentinel-3 missions. To ensure its utility in a wide range of scientific and operational applications, validation efforts are required. In the past, direct validation has been constrained by the need for costly airborne hyperspectral data acquisitions, due to the lack of freely available high spatial resolution imagery incorporating appropriate spectral bands. The Multispectral Instrument (MSI) on-board the Sentinel-2 missions now offers a promising alternative. We explored the synergetic use of MSI data for validation of the OLCI Terrestrial Chlorophyll Index (OTCI) over the Valencia Anchor Station, a large agricultural site in the Valencian Community, Spain. Using empirical and machine learning techniques applied to MSI data, in situ measurements were upscaled to the moderate spatial resolution of the OTCI. An RMSECV of 0.09 g.m(-2) (NRMSECV = 20.93%) was achieved, highlighting the valuable information MSI data can provide when used in synergy with OLCI data for land product validation. Good agreement between the OTCI and upscaled in situ measurements was observed (r = 0.77, p < 0.01), providing increased confidence to users of the product over vineyard dominated Mediterranean environments.This work was supported in part by the European Space Agency and European Commission through the Sentinel-3 Mission Performance Centre.Brown, LA.; Dash, J.; Lidón, A.; Lopez-Baeza, E.; Dransfeld, S. (2019). Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index Over a Vineyard Dominated Mediterranean Environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12(7):2244-2251. https://doi.org/10.1109/JSTARS.2019.28999982244225112

    Characterising the land surface phenology of Africa using 500 m MODIS EVI

    Get PDF
    Vegetation phenological studies at different spatial and temporal scales offer better understanding of the relationship between the global climate and the global distribution of biogeographical zones. These studies in the last few decades have focussed on characterising and understanding vegetation phenology and its drivers especially using satellite sensor data. Nevertheless, despite being home to 17% of the global forest cover, approximately 12% of the world's tropical mangroves, and a diverse range of vegetation types, Africa is one of the most poorly studied regions in the world. There has been no study characterising land surface phenology (LSP) of the major land cover types in the different geographical sub-regions in Africa, and only coarse spatial resolution datasets have been used for continental studies. Therefore, we aim to provide seasonal phenological pattern of Africa's vegetation and characterise the LSP of major land cover types in different geographical sub-regions in Africa at a medium spatial resolution of 500 m using MODIS EVI time-series data over a long temporal range of 15 years (2001–2015). The Discrete Fourier Transformation (DFT) technique was employed to smooth the time-series data and an inflection point-based method was used to extract phenological parameters such as start of season (SOS) and end of season (EOS). Homogeneous pixels from 12 years (2001–2012) MODIS land cover data (MODIS MCD12Q1) was used to describe, for the first time, the LSP of the major vegetation types in Africa. The results from this research characterise spatially and temporally the highly irregular and multi-annual variability of the vegetation phenology of Africa, and the maps and charts provide an improved representation of the LSP of Africa, which can serve as a pivot to filling other research gaps in the African continent

    Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology:A case study in Iraq

    Get PDF
    Crop production and yield estimation using remotely sensed data have been studied widely, but such information is generally scarce in arid and semi-arid regions. In these regions, inter-annual variation in climatic factors (such as rainfall) combined with anthropogenic factors (such as civil war) pose major risks to food security. Thus, an operational crop production estimation and forecasting system is required to help decision-makers to make early estimates of potential food availability. Data from NASA's MODIS with official crop statistics were combined to develop an empirical regression-based model to forecast winter wheat and barley production in Iraq. The study explores remotely sensed indices representing crop productivity over the crop growing season to find the optimal correlation with crop production. The potential of three different remotely sensed indices, and information related to the phenology of crops, for forecasting crop production at the governorate level was tested and their results were validated using the leave-one-year-out approach. Despite testing several methodological approaches, and extensive spatio-temporal analysis, this paper depicts the difficulty in estimating crop yield on an annual base using current satellite low-resolution data. However, more precise estimates of crop production were possible. The result of the current research implies that the date of the maximum vegetation index (VI) offered the most accurate forecast of crop production with an average R2 = 0.70 compared to the date of MODIS EVI (Avg R2 = 0.68) and a NPP (Avg R2 = 0.66). When winter wheat and barley production were forecasted using NDVI, EVI and NPP and compared to official statistics, the relative error ranged from − 20 to 20%, − 45 to 28% and − 48 to 22%, respectively. The research indicated that remotely sensed indices could characterize and forecast crop production more accurately than simple cropping area, which was treated as a null model against which to evaluate the proposed approach

    Remote sensing of mangrove forest phenology and its environmental drivers

    Get PDF
    Mangrove forest phenology at the regional scale have been poorly investigated and its driving factors remain unclear. Multi-temporal remote sensing represents a key tool to investigate vegetation phenology, particularly in environments with limited accessibility and lack of in situ measurements. This paper presents the first characterisation of mangrove forest phenology from the Yucatan Peninsula, south east Mexico. We used 15-year time-series of four vegetation indices (EVI, NDVI, gNDVI and NDWI) derived from MODIS surface reflectance to estimate phenological parameters which were then compared with in situ climatic variables, salinity and litterfall. The Discrete Fourier Transform (DFT) was used to smooth the raw data and four phenological parameters were estimated: start of season (SOS), time of maximum greenness (Max Green), end of season (EOS) and length of season (LOS). Litterfall showed a distinct seasonal pattern with higher rates during the end of the dry season and during the wet season. Litterfall was positively correlated with temperature (r = 0.88, p <0.01) and salinity (r = 0.70, p <0.01). The results revealed that although mangroves are evergreen species the mangrove forest has clear greenness seasonality which is negatively correlated with litterfall and generally lagged behind maximum rainfall. The dates of phenological metrics varied depending on the choice of vegetation indices reflecting the sensitivity of each index to a particular aspect of vegetation growth. NDWI, an index associated to canopy water content and soil moisture had advanced dates of SOS, Max Green and EOS while gNDVI, an index primarily related to canopy chlorophyll content had delayed dates. SOS ranged between day of the year (DOY) 144 (late dry season) and DOY 220 (rainy season) while the EOS occurred between DOY 104 (mid-dry season) to DOY 160 (early rainy season). The length of the growing season ranged between 228 and 264 days. Sites receiving a greater amount of rainfall between January and March showed an advanced SOS and Max Green. This phenological characterisation is useful to understand the mangrove forest dynamics at the landscape scale and to monitor the status of mangrove. In addition the results will serve as a baseline against which to compare future changes in mangrove phenology due to natural or anthropogenic causes

    Fusion of Landsat 8 OLI and Sentinel-2 MSI data

    Get PDF
    Sentinel-2 is a wide-swath and fine spatial resolution satellite imaging mission designed for data continuity and enhancement of the Landsat and other missions. The Sentinel-2 data are freely available at the global scale, and have similar wavelengths and the same geographic coordinate system as the Landsat data, which provides an excellent opportunity to fuse these two types of satellite sensor data together. In this paper, a new approach is presented for the fusion of Landsat 8 Operational Land Imager and Sentinel-2 Multispectral Imager data to coordinate their spatial resolutions for continuous global monitoring. The 30 m spatial resolution Landsat 8 bands are downscaled to 10 m using available 10 m Sentinel-2 bands. To account for the land-cover/land-use (LCLU) changes that may have occurred between the Landsat 8 and Sentinel-2 images, the Landsat 8 panchromatic (PAN) band was also incorporated in the fusion process. The experimental results showed that the proposed approach is effective for fusing Landsat 8 with Sentinel-2 data, and the use of the PAN band can decrease the errors introduced by LCLU changes. By fusion of Landsat 8 and Sentinel-2 data, more frequent observations can be produced for continuous monitoring (this is particularly valuable for areas that can be covered easily by clouds, thereby, contaminating some Landsat or Sentinel-2 observations), and the observations are at a consistent fine spatial resolution of 10 m. The products have great potential for timely monitoring of rapid changes

    HemiPy: A Python module for automated estimation of forest biophysical variables and uncertainties from digital hemispherical photographs

    Get PDF
    Digital hemispherical photography (DHP) is widely used to derive forest biophysical variables including leaf, plant, and green area index (LAI, PAI and GAI), the fraction of intercepted photosynthetically active radiation (FIPAR), and the fraction of vegetation cover (FCOVER). However, the majority of software packages for processing DHP data are based on a graphical user interface, making programmatic analysis difficult. Meanwhile, few natively support analysis of RAW image formats, while none incorporate the propagation or provision of uncertainties. To address these limitations, we present HemiPy, an open‐source Python module for deriving forest biophysical variables and uncertainties from DHP images in an automated manner. We assess HemiPy using simulated hemispherical images, in addition to multiannual time‐series and litterfall data from several forested National Ecological Observatory Network (NEON) sites, as well as comparison against the CAN‐EYE software package. Multiannual time‐series of PAI, FIPAR and FCOVER demonstrate HemiPy's outputs realistically represent expected temporal patterns. Comparison against litterfall data reveals reasonable accuracies are achievable, with RMSE values close to the error of ~1 unit typically attributed to optical LAI measurement approaches. HemiPy's PAI, FIPAR and FCOVER outputs demonstrate good agreement with CAN‐EYE. Consistent with previous studies, when compared to simulated hemispherical images, better agreement is observed for PAI derived using gap fraction near the hinge angle of 57.5° only, as opposed to values derived using gap fraction over a wider range of zenith angles. HemiPy should prove a useful tool for processing DHP images, and its open‐source nature means that it can be adopted, extended and further refined by the user community

    Stage 1 Validation of Plant Area Index from the Global Ecosystem Dynamics Investigation

    Get PDF
    The Global Ecosystem Dynamics Investigation (GEDI) aims to provide improved characterization of forest structure, and plant area index (PAI) is one of many variables provided in the official GEDI Level 2B (L2B) product suite. However, since release, few quantitative validation studies have been conducted. To reach Stage 1 of the validation hierarchy proposed by the Land Product Validation (LPV) sub-group of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV), we provide an initial assessment of PAI estimates from GEDI’s L2B product. This is achieved using 18 in situ reference measurements available through the Copernicus Ground Based Observations for Validation (GBOV) service. We show that GEDI L2B PAI retrievals provide a nearly unbiased estimate of effective (PAI e ) (RMSD = 0.95, bias = 0.02, slope = 1.07), but systematically underestimate PAI (RMSD = 1.42, bias = -0.91, slope = 0.77). This is attributed to an assumed random distribution of plant material in the algorithm. To reach Stage 2 of the CEOS WGCV LPV hierarchy, continued work is needed to validate the product against additional in situ reference measurements covering further locations and time periods
    corecore