7,489 research outputs found
Methodology for Three Dimensional Nozzle Design
Criteria for the selection and methods of analysis for designing a hypersonic scramjet nozzle are discussed. The criteria are based on external and internal flow requirements, related to drag, lift, and pitching moments of the vehicle and thrust of the engine. The steps involved in establishing the criteria are analyzed. Mathematical models of the design procedure are provided
Numerical program for analysis of three-dimensional supersonic exhaust flow fields (CHAR 3D)
Choice of reference plane orientation depends on specific nozzle geometry, with different configurations requiring different reference plane systems. In addition, for given configuration several reference systems may be used in different regions of flow field, so each system is locally aligned with flow
Effect of simultaneous application of field and pressure on magnetic transitions in LaCaMnO
We study combined effect of hydrostatic pressure and magnetic field on the
magnetization of LaCaMnO. We do not observe any
significant effect of pressure on the paramagnetic to ferromagnetic transition.
However, pressure asymmetrically affects the thermal hysteresis across the
ferro-antiferromagnetic first-order transition, which has strong field
dependence. Though the supercooling (T*) and superheating (T**) temperatures
decrease and the value of magnetization at 5K (M) increases with
pressure, T* and M shows abrupt changes in tiny pressure of 0.68kbar.
These anomalies enhance with field. In 7Tesla field, transition to
antiferromagnetic phase disappears in 0.68kbar and M show significant
increase. Thereafter, increase in pressure up to 10kbar has no noticeable
effect on the magnetization
Evaluation of Hexane Extract of Tuber of Root of Cyperus rotundus Linn (Cyperaceae) for Repellency against Mosquito Vectors
Hexane extract of tuber of plant Cyperus rotundus (Cyperaceae) was screened under laboratory conditions for repellent activity against mosquito vector Anopheles culicifacies Giles species A (Diptera: Culicidae), Anopheles stephensi Liston (Diptera: Culicidae), and Culex quinquefasciatus Say (Diptera: Culicidae). The Cyperus rotundus tuber extract was used to determine their effect on mosquito vector, and comparison with the DEET (NN Diethyl 1-3 methyl Benzamide, formerly known as diethyl 1-m-toluamide). The tuber extracts showed more effective at all the dose. Result obtained from the laboratory experiment showed that the tuber extracts are more effective for repellency of allthe mosquito vector even at low dose. Clear dose response relationships were established with the highest dose of 10% tuber extract evoking 100% repellency. Percent protection obtained against An. culicifacies Giles species A 100% repellency in 4 hours, 6 hours, An. stephensi 100% repellency in 6 hours and Cx. quinquefasciatus was 100% repellency in 6 hours at the 10% concentration. Against DEET- 2.5% An. culicifacies A 100% repellency in 1 hour, 2 hours, 6 hours, An. stephensi have shown 100% repellency in 6 hours, and Culex quinquefasciatus have shown 100% repellency in 1 hour, 2 hours, 6 hours. The consolidated data of the repellency observed in different species is given and it is evident that the over all repellency rates varied between 80 and 100% for different repellents concentrations (2.5%, 5%, and 10%). The extract can be applied as an effective personal protective measure against mosquito bites
Growth of Oriented Au Nanostructures: Role of Oxide at the Interface
We report on the formation of oriented gold nano structures on Si(100)
substrate by annealing procedures in low vacuum (\approx10-2 mbar) and at high
temperature (\approx 975^{\circ} C). Various thicknesses of gold films have
been deposited with SiOx (using high vacuum thermal evaporation) and without
SiOx (using molecular beam epitaxy) at the interface on Si(100). Electron
microscopy measurements were performed to determine the morphology, orientation
of the structures and the nature of oxide layer. Interfacial oxide layer, low
vacuum and high temperature annealing conditions are found to be necessary to
grow oriented gold structures. These gold structures can be transferred by
simple scratching method.Comment: 13 pages, 3 figures, Accepted in J. Appl. Phy
Evidence of 1D behaviour of He confined within carbon-nanotube bundles
We present the first low-temperature thermodynamic investigation of the
controlled physisorption of He gas in carbon single-wall nanotube (SWNT)
samples. The vibrational specific heat measured between 100 mK and 6 K
demonstrates an extreme sensitivity to outgassing conditions. For bundles with
a few number of NTs the extra contribution to the specific heat, C,
originating from adsorbed He at very low density displays 1D behavior,
typical for He atoms localized within linear channels as grooves and
interstitials, for the first time evidenced. For larger bundles, C
recovers the 2D behaviour akin to the case of He films on planar
substrates (grafoil).Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Effect of Helical Winding Angle on External Pressure based Buckling of Partially Filled Thin Composite Cylindrical Shells
Effect of helical winding angle on buckling load of thin composite tubes is investigated in this work. Experiments are conducted on both empty and partially filled S2 glass tubes to estimate contribution of strength to the tubes by the filler material. Chosen filler material mechanically simulates behavior of typical solid propellant used in aerospace application. FE analysis with non-linear effect correlates well with the experimental data. Three series of experiments are conducted to quantify effect of helical winding angle and increase in volumetric loading fraction(VLF). Results confirm appreciable improvement in strength of filled tubes for higher VLF. For the chosen pattern of winding, lower winding angle provides more strength to the tubes against external pressure buckling.
 
Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface
Although the creation of spin polarization in various non-magnetic media via
electrical spin injection from a ferromagnetic tunnel contact has been
demonstrated, much of the basic behavior is heavily debated. It is reported
here for semiconductor/Al2O3/ferromagnet tunnel structures based on Si or GaAs
that local magnetostatic fields arising from interface roughness dramatically
alter and even dominate the accumulation and dynamics of spins in the
semiconductor. Spin precession in the inhomogeneous magnetic fields is shown to
reduce the spin accumulation up to tenfold, and causes it to be inhomogeneous
and non-collinear with the injector magnetization. The inverted Hanle effect
serves as experimental signature. This interaction needs to be taken into
account in the analysis of experimental data, particularly in extracting the
spin lifetime and its variation with different parameters (temperature, doping
concentration). It produces a broadening of the standard Hanle curve and
thereby an apparent reduction of the spin lifetime. For heavily doped n-type Si
at room temperature it is shown that the spin lifetime is larger than
previously determined, and a new lower bound of 0.29 ns is obtained. The
results are expected to be general and occur for spins near a magnetic
interface not only in semiconductors but also in metals, organic and
carbon-based materials including graphene, and in various spintronic device
structures.Comment: Final version, with text restructured and appendices added (25 pages,
9 figures). To appear in Phys. Rev.
- …