244 research outputs found

    Observation of narrow polar jets in the nascent wind of oxygen-rich AGB star EP Aqr

    Full text link
    Using ALMA observations of 12^{12}CO(2-1), 28^{28}SiO(5-4) and 32^{32}SO2_2(166,10_{6,10}-175,13_{5,13}) emissions of the circumstellar envelope of AGB star EP Aqr, we describe the morpho-kinematics governing the nascent wind. Main results are: 1) Two narrow polar structures, referred to as jets, launched from less than 25 au away from the star, build up between \sim 20 au and \sim 100 au to a velocity of \sim 20 \kms. They fade away at larger distances and are barely visible in CO data. 2) SO2_2, SiO and CO emissions explore radial ranges reaching respectively \sim30 au, 250 au and 1000 au from the star, preventing the jets to be detected in SO2_2 data. 3) Close to the star photosphere, rotation (undetected in SiO and CO data) and isotropic radial expansion combine with probable turbulence to produce a broad SO2_2 line profile (\sim 7.5 \kms\ FWHM). 4) A same axis serves as axis of rotation close to the star, as jet axis and as axi-symmetry axis at large distances. 5) A radial wind builds up at distances up to \sim 300 au from the star, with larger velocity near polar than equatorial latitudes. 6) A sharp depletion of SiO and CO emissions, starting near the star, rapidly broadens to cover the whole blue-western quadrant, introducing important asymmetry in the CO and particularly SiO observations. 7) The 12^{12}C/13^{13}C abundance ratio is measured as 9±\pm2. 8) Plausible interpretations are discussed, in particular assuming the presence of a companion.Comment: 18 pages, 16 figures, MNRAS accepte

    12CO emission from EP Aqr: Another example of an axi-symmetric AGB wind?

    Full text link
    The CO(1-0) and (2-1) emission of the circumstellar envelope of the AGB star EP Aqr has been observed using the IRAM PdBI and the IRAM 30-m telescope. The line profiles reveal the presence of two distinct components centered on the star velocity, a broad component extending up to ~10 km/s and a narrow component indicating an expansion velocity of ~2 km/s. An early analysis of these data was performed under the assumption of isotropic winds. The present study revisits this interpretation by assuming instead a bipolar outflow nearly aligned with the line of sight. A satisfactory description of the observed flux densities is obtained with a radial expansion velocity increasing from ~2 km/s at the equator to ~10 km/s near the poles. The angular aperture of the bipolar outflow is ~45 deg with respect to the star axis, which makes an angle of ~13 deg with the line of sight. A detailed study of the CO(1-0) to CO(2-1) flux ratio reveals a significant dependence of the temperature on the star latitude, smaller and steeper at the poles than at the equator at large distances from the star. Under the hypothesis of radial expansion and of rotation invariance about the star axis, the effective density has been evaluated in space as a function of star coordinates. Evidence is found for an enhancement of the effective density in the northern hemisphere of the star at angular distances in excess of ~3" and covering the whole longitudinal range. The peak velocity of the narrow component is observed to vary slightly with position on the sky, a variation consistent with the model and understood as the effect of the inclination of the star axis with respect to the line of sight. While the phenomenological model presented here reproduces well the general features of the observations, significant differences are also revealed, which would require a better spatial resolution to be properly described.Comment: accepted for publication in Astronomy & Astrophysic

    The morpho-kinematics of the circumstellar envelope around the AGB star EP Aqr

    Full text link
    ALMA observations of CO(1-0) and CO(2-1) emissions of the circumstellar envelope of EP Aqr, an oxygen-rich AGB star, are reported. A thorough analysis of their properties is presented using an original method based on the separation of the data-cube into a low velocity component associated with an equatorial outflow and a faster component associated with a bipolar outflow. A number of important and new results are obtained concerning the distribution in space of the effective emissivity, the temperature, the density and the flux of matter. A mass loss rate of (1.6±\pm0.4)107^{-7} solar masses per year is measured. The main parameters defining the morphology and kinematics of the envelope are evaluated and uncertainties inherent to de-projection are critically discussed. Detailed properties of the equatorial region of the envelope are presented including a measurement of the line width and a precise description of the observed inhomogeneity of both morphology and kinematics. In particular, in addition to the presence of a previously observed spiral enhancement of the morphology at very small Doppler velocities, a similarly significant but uncorrelated circular enhancement of the expansion velocity is revealed, both close to the limit of sensitivity. The results of the analysis place significant constraints on the parameters of models proposing descriptions of the mass loss mechanism, but cannot choose among them with confidence.Comment: 26 pages, 31 figures, accepted for publication in MNRA

    R-matrix and K-matrix analysis of elastic alpha-alpha scattering

    Full text link
    The R- and K-matrix parametrizations are analyzed and compared for the elastic alpha-alpha scattering at center-of-mass energies below 40 MeV. The two parametrizations differ in their definitions of the resonance energy which can lead to quite different results. The physical values of the best-fit parameters are compared with those computed for a potential model. The existence of a broad resonance near 9 MeV is not supported by the data or by the potential model. We discuss the positive and negative aspects for both parametrizations.Comment: 14 pages with 4 figure

    Hard scattering and jets--from p-p collisions in the 1970's to Au+Au collisions at RHIC

    Full text link
    Hard scattering in p-p collisions, discovered at the CERN ISR in 1972 by the method of leading particles, proved that the partons of Deeply Inelastic Scattering strongly interacted with each other. Further ISR measurements utilizing inclusive single or pairs of hadrons established that high pT particles are produced from states with two roughly back-to-back jets which are the result of scattering of constituents of the nucleons as described by Quantum Chromodynamics (QCD), which was developed during the course of these measurements. These techniques, which are the only practical method to study hard-scattering and jet phenomena in Au+Au central collisions, are reviewed, with application to measurements at RHIC.Comment: 4 pages, 5 figures, Proceedings of Hard Probes 2004, International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions, Nov 4-10, 2004, to appear in EPJ

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    An upper limit to the photon fraction in cosmic rays above 10^19 eV from the Pierre Auger Observatory

    Get PDF
    An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies above 10^19 eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favoured
    corecore