47 research outputs found

    Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer

    Get PDF
    Abstract Background Based on promising phase II data, the histone deacetylase inhibitor entinostat is in phase III trials for patients with metastatic estrogen receptor-positive breast cancer. Predictors of sensitivity and resistance, however, remain unknown. Methods A total of eight cell lines and nine mouse models of breast cancer were treated with entinostat. Luminal cell lines were treated with or without entinostat at their IC50 doses, and MMTV/Neu luminal mouse tumors were untreated or treated with entinostat until progression. We investigated these models using their gene expression profiling by microarray and copy number by arrayCGH. We also utilized the network-based DawnRank algorithm that integrates DNA and RNA data to identify driver genes of resistance. The impact of candidate drivers was investigated in The Cancer Genome Atlas and METABRIC breast cancer datasets. Results Luminal models displayed enhanced sensitivity to entinostat as compared to basal-like or claudin-low models. Both in vitro and in vivo luminal models showed significant downregulation of Myc gene signatures following entinostat treatment. Myc gene signatures became upregulated on tumor progression in vivo and overexpression of Myc conferred resistance to entinostat in vitro. Further examination of resistance mechanisms in MMTV/Neu tumors identified a portion of mouse chromosome 4 that had DNA copy number loss and low gene expression. Within this region, Jun was computationally identified to be a driver gene of resistance. Jun knockdown in cell lines resulted in upregulation of Myc signatures and made these lines more resistant to entinostat. Jun-deleted samples, found in 17–23% of luminal patients, had significantly higher Myc signature scores that predicted worse survival. Conclusions Entinostat inhibited luminal breast cancer through Myc signaling, which was upregulated by Jun DNA loss to promote resistance to entinostat in our models. Jun DNA copy number loss, and/or high MYC signatures, might represent biomarkers for entinostat responsiveness in luminal breast cancer

    Docetaxel-Loaded PLGA Nanoparticles Improve Efficacy in Taxane-Resistant Triple-Negative Breast Cancer

    Get PDF
    Novel treatment strategies, including nanomedicine, are needed for improving management of triple-negative breast cancer. Patients with triple-negative breast cancer, when considered as a group, have a worse outcome after chemotherapy than patients with breast cancers of other subtypes, a finding that reflects the intrinsically adverse prognosis associated with the disease. The aim of this study was to improve the efficacy of docetaxel by incorporation into a novel nanoparticle platform for the treatment of taxane-resistant triple-negative breast cancer. Rod-shaped nanoparticles encapsulating docetaxel were fabricated using an imprint lithography based technique referred to as Particle Replication in Nonwetting Templates (PRINT). These rod-shaped PLGA-docetaxel nanoparticles were tested in the C3(1)-T-antigen (C3Tag) genetically engineered mouse model (GEMM) of breast cancer that represents the basal-like subtype of triple-negative breast cancer and is resistant to therapeutics from the taxane family. Thi..

    A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity

    Get PDF
    The poor solubility of paclitaxel (PTX), the commercially most successful anticancer drug, has long been hampering the development of suitable formulations. Here, we present translational evaluation of a nanoformulation of PTX, which is characterized by a facile preparation, extraordinary high drug loading of 50 % wt. and PTX solubility of up to 45 g/L, excellent shelf stability and controllable, sub-100 nm size. We observe favorable in vitro and in vivo safety profiles and a higher maximum tolerated dose compared to clinically approved formulations. Pharmacokinetic analysis reveals that the higher dose administered leads to a higher exposure of the tumor to PTX. As a result, we observed improved therapeutic outcome in orthotopic tumor models including particularly faithful and aggressive “T11” mouse claudin-low breast cancer orthotopic, syngeneic transplants. The promising preclinical data on the presented PTX nanoformulation showcase the need to investigate new excipients and is a robust basis to translate into clinical trials

    Role of HGF in obesity-associated tumorigenesis: C3(1)-TAg mice as a model for human basal-like breast cancer

    Get PDF
    Obesity is associated with basal-like breast cancer (BBC), an aggressive breast cancer subtype. The objective of this study was to determine whether obesity promotes BBC onset in adulthood and to evaluate the role of stromal-epithelial interactions in obesity-associated tumorigenesis. We hypothesized that hepatocyte growth factor (HGF) plays a promoting role in BBC, which express the HGF receptor, c-Met. In C3(1)-Tag mice, a murine model of BBC, we demonstrated that obesity leads to a significant increase in HGF secretion and an associated decrease in tumor latency. By immunohistochemical analysis, normal mammary gland exhibited obesity-induced HGF, c-Met and phospho-c-Met, indicating that activation of the cascade was obesity-driven. HGF secretion was also increased from primary mammary fibroblasts isolated from normal mammary glands and tumors of obese mice compared to lean. These results demonstrate that obesity-induced elevation of HGF expression is a stable phenotype, maintained after several passages, and after removal of dietary stimulation. Conditioned media from primary tumor fibroblasts from obese mice drove tumor cell proliferation. In co-culture, neutralization of secreted HGF blunted tumor cell migration, further linking obesity-mediated HGF-dependent effects to in vitro measures of tumor aggressiveness. In sum, these results demonstrate that HGF/c-Met plays an important role in obesity-associated carcinogenesis. Understanding the effects of obesity on risk and progression is important given that epidemiologic studies imply a portion of BBC could be eliminated by reducing obesity

    Enhancer Remodeling during Adaptive Bypass to MEK Inhibition Is Attenuated by Pharmacologic Targeting of the P-TEFb Complex

    Get PDF
    Targeting the dysregulated BRaf-MEK-ERK pathway in cancer has increasingly emerged in clinical trial design. Despite clinical responses in specific cancers using inhibitors targeting BRaf and MEK, resistance develops often involving non-genomic adaptive bypass mechanisms. Inhibition of MEK1/2 by trametinib in triple negative breast cancer (TNBC) patients induced dramatic transcriptional responses, including upregulation of receptor tyrosine kinases (RTKs) comparing tumor samples before and after one week of treatment. In preclinical models MEK inhibition induced genome-wide enhancer formation involving the seeding of BRD4, MED1, H3K27 acetylation and p300 that drives transcriptional adaptation. Inhibition of P-TEFb associated proteins BRD4 and CBP/p300 arrested enhancer seeding and RTK upregulation. BRD4 bromodomain inhibitors overcame trametinib resistance, producing sustained growth inhibition in cells, xenografts and syngeneic mouse TNBC models. Pharmacological targeting of P-TEFb members in conjunction with MEK inhibition by trametinib is an effective strategy to durably inhibit epigenomic remodeling required for adaptive resistance

    Pharmacokinetics and Efficacy of PEGylated Liposomal Doxorubicin in an Intracranial Model of Breast Cancer

    Get PDF
    Breast cancer brain metastases (BCBM) are a challenging consequence of advanced BC. Nanoparticle agents, including liposomes, have shown enhanced delivery to solid tumors and brain. We compared pharmacokinetics (PK) and efficacy of PEGylated liposomal doxorubicin (PLD) with non-liposomal doxorubicin (NonL-doxo) in an intracranial model of BC

    Combined PI3K/mTOR and MEK Inhibition Provides Broad Antitumor Activity in Faithful Murine Cancer Models

    Get PDF
    Anticancer drug development is inefficient, but genetically engineered murine models (GEMM) and orthotopic, syngeneic transplants (OST) of cancer may offer advantages to in vitro and xenograft systems

    Predicting Drug Responsiveness in Human Cancers Using Genetically Engineered Mice

    Get PDF
    To use genetically engineered mouse models (GEMMs) and orthotopic syngeneic murine transplants (OSTs) to develop gene-expression based predictors of response to anti-cancer drugs in human tumors. These mouse models offer advantages including precise genetics and an intact microenvironment/immune system

    Effects of Tumor Microenvironment Heterogeneity on Nanoparticle Disposition and Efficacy in Breast Cancer Tumor Models

    Get PDF
    Tumor cells are surrounded by a complex microenvironment. The purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in the variability of nanoparticle (NP) delivery and efficacy
    corecore