438 research outputs found

    File Specification for the MERRA Aerosol Reanalysis (MERRAero): MODIS AOD Assimilation based on a MERRA Replay

    Get PDF
    This document describes the gridded output files produced by the Goddard Earth Observing System version 5 (GEOS-5) Goddard Aerosol Assimilation System (GAAS) from July 2002 through December 2014. The MERRA Aerosol Reanalysis (MERRAero) is produced with the hydrostatic version of the GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), ozone, carbon monoxide and carbon dioxide. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic emission sources. Meteorology is replayed from the MERRA Reanalysis

    CMS Software Distribution on the LCG and OSG Grids

    Full text link
    The efficient exploitation of worldwide distributed storage and computing resources available in the grids require a robust, transparent and fast deployment of experiment specific software. The approach followed by the CMS experiment at CERN in order to enable Monte-Carlo simulations, data analysis and software development in an international collaboration is presented. The current status and future improvement plans are described.Comment: 4 pages, 1 figure, latex with hyperref

    Distributed Computing Grid Experiences in CMS

    Get PDF
    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data-taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure and the current development of the CMS analysis system

    The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation

    Get PDF
    The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA's previous satellite era (1980 - onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations from ground, aircraft, and shipborne instruments. We demonstrate the positive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate

    A New Global Anthropogenic SO2 Emission Inventory for the Last Decade: A Mosaic of Satellite-Derived and Bottom-Up Emissions

    Get PDF
    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor have been used to detect emissions from large point sources. Emissions from over 400 sources have been quantified individually based on OMI observations, accounting for about a half of total reported anthropogenic SO2 emissions. Here we report a newly developed emission inventory, OMI-HTAP, by combining these OMI-based emission estimates and the conventional bottom-up inventory, HTAP, for smaller sources that OMI is not able to detect. OMI-HTAP includes emissions from OMI-detected sources that are not captured in previous leading bottom-up inventories, enabling more accurate emission estimates for regions with such missing sources. In addition, our approach offers the possibility of rapid updates to emissions from large point sources that can be detected by satellites. Our methodology applied to OMI-HTAP can also be used to merge improved satellite-derived estimates with other multi-year bottom-up inventories, which may further improve the accuracy of the emission trends. OMI-HTAP SO2 emissions estimates for Persian Gulf, Mexico, and Russia are 59%, 65%, and 56% larger than HTAP estimates, respectively, in year 2010. We have evaluated the OMI-HTAP inventory by performing simulations with the Goddard Earth Observing System version 5 (GEOS-5) model. The GEOS-5 simulated SO2 concentrations driven by both HTAP and OMI-HTAP were compared against in situ measurements. We focus for the validation on year 2010 for which HTAP is most valid and for which a relatively large number of in situ measurements are available. Results show that the OMI-HTAP inventory improves the agreement between the model and observations, in particular over the US, with the normalized mean bias decreasing from 0.41 (HTAP) to -0.03 (OMI-HTAP) for year 2010. Simulations with the OMI-HTAP inventory capture the worldwide major trends of large anthropogenic SO2 emissions that are observed with OMI. Correlation coefficients of the observed and modelled surface SO2 in 2014 increase from 0.16 (HTAP) to 0.59 (OMI-HTAP) and the normalized mean bias dropped from 0.29 (HTAP) to 0.05 (OMI-HTAP), when we updated 2010 HTAP emissions with 2014 OMI-HTAP emissions in the model

    Source Attributions of Pollution to the Western Arctic During the NASA ARCTAS Field Campaign

    Get PDF
    We use the NASA GEOS-5 transport model with tagged tracers to investigate the contributions of different regional sources of CO and black carbon (BC) to their concentrations in the Western Arctic (i.e., 50-90 deg N and 190- 320 deg E) in spring and summer 2008. The model is evaluated by comparing the results with airborne measurements of CO and BC from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaigns to demonstrate the strengths and limitations of our simulations. We also examine the reliability of tagged CO tracers in characterizing air mass origins using the measured fossil fuel tracer of dichloromethane and the biomass burning tracer of acetonitrile. Our tagged CO simulations suggest that most of the enhanced CO concentrations (above background level from CH4 production) observed during April originate from Asian anthropogenic emissions. Boreal biomass burning emissions and Asian anthropogenic emissions are of similar importance in July domain wise, although the biomass burning CO fraction is much larger in the area of the ARCTAS field experiments. The fraction of CO from Asian anthropogenic emissions is larger in spring than in summer. European sources make up no more than 10% of CO levels in the campaign domain during either period. Comparisons of CO concentrations along the flight tracks with regional averages from GEOS-5 show that the alongtrack measurements are representative of the concentrations within the large domain of the Western Arctic in April but not in July

    Long-Lived Neutralino NLSPs

    Full text link
    We investigate the collider signatures of heavy, long-lived, neutral particles that decay to charged particles plus missing energy. Specifically, we focus on the case of a neutralino NLSP decaying to Z and gravitino within the context of General Gauge Mediation. We show that a combination of searches using the inner detector and the muon spectrometer yields a wide range of potential early LHC discoveries for NLSP lifetimes ranging from 10^(-1)-10^5 mm. We further show that events from Z(l+l-) can be used for detailed kinematic reconstruction, leading to accurate determinations of the neutralino mass and lifetime. In particular, we examine the prospects for detailed event study at ATLAS using the ECAL (making use of its timing and pointing capabilities) together with the TRT, or using the muon spectrometer alone. Finally, we also demonstrate that there is a region in parameter space where the Tevatron could potentially discover new physics in the delayed Z(l+l-)+MET channel. While our discussion centers on gauge mediation, many of the results apply to any scenario with a long-lived neutral particle decaying to charged particles.Comment: 31 pages, 12 figure

    Multiplicity fluctuations in nuclear collisions at 158 A GeV

    Get PDF
    System size dependence of multiplicity fluctuations of charged particles produced in nuclear collisions at 158 A GeV was studied in the NA49 CERN experiment. Results indicate a non-monotonic dependence of the scaled variance of the multiplicity distribution with a maximum for semi-peripheral Pb+Pb interactions with number of projectile participants of about 35. This effect is not observed in a string-hadronic model of nuclear collision HIJING.Comment: Presented at "Focus on Multiplicity", 17-19 of June, Bari, Ital

    Report from NA49

    Full text link
    The most recent data of NA49 on hadron production in nuclear collisions at CERN SPS energies are presented. Anomalies in the energy dependence of pion and kaon production in central Pb+Pb collisions are observed. They suggest that the onset of deconfinement is located at about 30 AGeV. Large multiplicity and transverse momentum fluctuations are measured for collisions of intermediate mass systems at 158 AGeV. The need for a new experimental programme at the CERN SPS is underlined.Comment: invited talk presented at Quark Matter 2004, 10 page

    Omega and Antiomega production in central Pb+Pb collisions at 40 and 158 AGeV

    Get PDF
    Results are presented on Omega production in central Pb+Pb collisions at 40 and 158 AGeV beam energy. Given are transverse-mass spectra, rapidity distributions, and total yields for the sum Omega+Antiomega at 40 AGeV and for Omega and Antiomega separately at 158 AGeV. The yields are strongly under-predicted by the string-hadronic UrQMD model and are in better agreement with predictions from a hadron gas models.Comment: 5 papes, 4 figures, 1 table, updated figure 4 and table 1. Final version, including some editorial changes, as published in PR
    corecore