2,274 research outputs found
Search for flavor-changing neutral currents and lepton-family-number violation in two-body D0 decays
Results of a search for the three neutral charm decays, D0 -> mu e, D0 -> mu
mu, and D0 -> e e, are presented. This study was based on data collected in
Experiment 789 at the Fermi National Accelerator Laboratory using 800 GeV/c
proton-Au and proton-Be interactions. No evidence is found for any of the
decays. Upper limits on the branching ratios, at the 90% confidence level, are
obtained.Comment: 28 pages, 18 figures. Submitted to Physical Review
Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study
Hemoglobin exhibits allosteric structural changes upon ligand binding due to
the dynamic interactions between the ligand binding sites, the amino acids
residues and some other solutes present under physiological conditions. In the
present study, the dynamical and quaternary structural changes occurring in two
unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures
of adult human hemoglobin were investigated with molecular dynamics. It is
shown that, in the sub-microsecond time scale, there is no marked difference in
the global dynamics of the amino acids residues in both the oxy- and the deoxy-
forms of the individual structures. In addition, the R, R2 are relatively
stable and do not present quaternary conformational changes within the time
scale of our simulations while the T structure is dynamically more flexible and
exhibited the T\rightarrow R quaternary conformational transition, which is
propagated by the relative rotation of the residues at the {\alpha}1{\beta}2
and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B
DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ
Monoamine Oxidase is a Major Determinant of Redox Balance in Human Atrial Myocardium and is Associated With Postoperative Atrial Fibrillation
BACKGROUND:
Onset of postoperative atrial fibrillation (POAF) is a common and costly complication of heart surgery despite major improvements in surgical technique and quality of patient care. The etiology of POAF, and the ability of clinicians to identify and therapeutically target high-risk patients, remains elusive.
METHODS AND RESULTS:
Myocardial tissue dissected from right atrial appendage (RAA) was obtained from 244 patients undergoing cardiac surgery. Reactive oxygen species (ROS) generation from multiple sources was assessed in this tissue, along with total glutathione (GSHt) and its related enzymes GSH-peroxidase (GPx) and GSH-reductase (GR). Monoamine oxidase (MAO) and NADPH oxidase were observed to generate ROS at rates 10-fold greater than intact, coupled mitochondria. POAF risk was significantly associated with MAO activity (Quartile 1 [Q1]: adjusted relative risk [ARR]=1.0; Q2: ARR=1.8, 95% confidence interval [CI]=0.84 to 4.0; Q3: ARR=2.1, 95% CI=0.99 to 4.3; Q4: ARR=3.8, 95% CI=1.9 to 7.5; adjusted Ptrend=0.009). In contrast, myocardial GSHt was inversely associated with POAF (Quartile 1 [Q1]: adjusted relative risk [ARR]=1.0; Q2: ARR=0.93, 95% confidence interval [CI]=0.60 to 1.4; Q3: ARR=0.62, 95% CI=0.36 to 1.1; Q4: ARR=0.56, 95% CI=0.34 to 0.93; adjusted Ptrend=0.014). GPx also was significantly associated with POAF; however, a linear trend for risk was not observed across increasing levels of the enzyme. GR was not associated with POAF risk.
CONCLUSIONS:
Our results show that MAO is an important determinant of redox balance in human atrial myocardium, and that this enzyme, in addition to GSHt and GPx, is associated with an increased risk for POAF. Further investigation is needed to validate MAO as a predictive biomarker for POAF, and to explore this enzyme's potential role in arrhythmogenesis
Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes
Constant-pressure molecular-dynamics simulations of phospholipid membranes in
the fluid phase reveal strong correlations between equilibrium fluctuations of
volume and energy on the nanosecond time-scale. The existence of strong
volume-energy correlations was previously deduced indirectly by Heimburg from
experiments focusing on the phase transition between the fluid and the ordered
gel phases. The correlations, which are reported here for three different
membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation
coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two
temperatures showing that the correlation coefficient increases as the phase
transition is approached
From Women-Staffed to Women-Led: Gender and Leadership in Academic Libraries, 1974-2018.
This article reviews post-1974 scholarly literature on women’s leadership in academic libraries, with the emphasis on the United States. The purpose of this synthesis is to highlight research areas and themes that have significantly expanded the profession’s knowledge about gender and its impact at the top administrative level. The article starts with a brief overview of theories of gender and leadership before tracing scholarship on the gendered career patterns singled out in Schiller’s work (1974). The article then focuses on additional issues related to gender and library administration, including leadership styles, perceptions of differences between male and female leaders, and the lack of diversity among academic library women directors
Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation
In this paper, we investigate the conformational dynamics of alanine
dipeptide under an external electric field by nonequilibrium molecular dynamics
simulation. We consider the case of a constant and of an oscillatory field. In
this context we propose a procedure to implement the temperature control, which
removes the irrelevant thermal effects of the field. For the constant field
different time-scales are identified in the conformational, dipole moment, and
orientational dynamics. Moreover, we prove that the solvent structure only
marginally changes when the external field is switched on. In the case of
oscillatory field, the conformational changes are shown to be as strong as in
the previous case, and non-trivial nonequilibrium circular paths in the
conformation space are revealed by calculating the integrated net probability
fluxes.Comment: 23 pages, 12 figure
Spectroscopic factors for bound s-wave states derived from neutron scattering lengths
A simple and model-independent method is described to derive neutron
single-particle spectroscopic factors of bound s-wave states in nuclei from neutron scattering lengths. Spectroscopic factors
for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and
^{41}Ar are compared to results derived from transfer experiments using the
well-known DWBA analysis and to shell model calculations. The scattering length
of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC,
uuencoded tex-files and postscript-files available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u
A Hydrophobic Gate in an Ion Channel: The Closed State of the Nicotinic Acetylcholine Receptor
The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the
`Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic
neurotransmission, and whose other members include receptors for glycine,
gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a
three dimensional structure of the nAChR in its closed state. However, the
exact nature and location of the channel gate remains uncertain. Although the
transmembrane pore is constricted close to its center, it is not completely
occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A.
Model calculations suggest that such a constriction may form a hydrophobic
gate, preventing movement of ions through a channel. We present a detailed and
quantitative simulation study of the hydrophobic gating model of the nicotinic
receptor, in order to fully evaluate this hypothesis. We demonstrate that the
hydrophobic constriction of the nAChR pore indeed forms a closed gate.
Potential of mean force (PMF) calculations reveal that the constriction
presents a barrier of height ca. 10 kT to the permeation of sodium ions,
placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A
radius hydrophobic pore can form a functional barrier to the permeation of a 1
A radius Na+ ion. Using a united atom force field for the protein instead of an
all atom one retains the qualitative features but results in differing
conductances, showing that the PMF is sensitive to the detailed molecular
interactions.Comment: Accepted by Physical Biology; includes a supplement and a
supplementary mpeg movie can be found at
http://sbcb.bioch.ox.ac.uk/oliver/download/Movies/watergate.mp
Trans−cis Switching Mechanisms in Proline Analogues and Their Relevance for the Gating of the 5-HT3 Receptor
Trans-cis isomerization of a proline peptide bond is a potential mechanism to open the channel of the 5-HT3 receptor. Here, we have used the metadynamics method to theoretically explore such a mechanism. We have determined the free energy surfaces in aqueous solution of a series of dipeptides of proline analogues and evaluated the free energy difference between the cis and trans isomers. These theoretical results were then compared with data from mutagenesis experiments, in which the response of the 5-HT3 receptor was measured when the proline at the apex of the M2-M3 transmembrane domain loop was mutated. The strong correlation between the experimental and the theoretical data supports the existence of a trans-cis proline switch for opening the 5-HT3 receptor ion channel
- …