332 research outputs found

    Spectral sum rules for the Tomonaga-Luttinger model

    Full text link
    In connection with recent publications we discuss spectral sum rules for the Tomonaga-Luttinger model without using the explicit result for the one-electron Green's function. They are usefull in the interpretation of recent high resolution photoemission spectra of quasi-one-dimensional conductors. It is shown that the limit of infinite frequency and band cut\-off do not commute. Our result for arbitrary shape of the interaction potential generalizes an earlier discussion by Suzumura. A general analytical expression for the spectral function for wave vectors far from the Fermi wave vector kFk_{F} is presented. Numerical spectra are shown to illustrate the sum rules.Comment: 9 pages, REVTEX 3.0, 2 figures added as postscript file

    How universal is the one-particle Green's function of a Luttinger liquid?

    Full text link
    The one-particle Green's function of the Tomonaga-Luttinger model for one-dimensional interacting Fermions is discussed. Far away from the origin of the plane of space-time coordinates the function falls off like a power law. The exponent depends on the direction within the plane. For a certain form of the interaction potential or within an approximated cut-off procedure the different exponents only depend on the strength of the interaction at zero momentum and can be expressed in terms of the Luttinger liquid parameters KρK_{\rho} and KσK_{\sigma} of the model at hand. For a more general interaction and directions which are determined by the charge velocity vρv_{\rho} and spin velocity vσv_{\sigma} the exponents also depend on the smoothness of the interaction at zero momentum and the asymptotic behavior of the Green's function is not given by the Luttinger liquid parameters alone. This shows that the physics of large space-time distances in Luttinger liquids is less universal than is widely believed.Comment: 5 pages with 2 figure

    Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension

    Full text link
    The single electron Green's function of the one-dimensional Tomonaga-Luttinger model in the presence of open boundaries is calculated with bosonization methods. We show that the critical exponents of the local spectral density and of the momentum distribution change in the presence of a boundary. The well understood universal bulk behavior always crosses over to a boundary dominated regime for small energies or small momenta. We show this crossover explicitly for the large-U Hubbard model in the low-temperature limit. Consequences for photoemission experiments are discussed.Comment: revised and reformatted paper to appear in Phys. Rev. Lett. (Feb. 1996). 5 pages (revtex) and 3 embedded figures (macro included). A complete postscript file is available from http://FY.CHALMERS.SE/~eggert/luttinger.ps or by request from [email protected]

    Spectral function of the 1D Hubbard model in the U+U\to +\infty limit

    Full text link
    We show that the one-particle spectral functions of the one-dimensional Hubbard model diverge at the Fermi energy like ωεF3/8|\omega-\varepsilon_F|^{-3/8} in the U+U\to +\infty limit. The Luttinger liquid behaviour ωεFα|\omega-\varepsilon_F|^\alpha, where α1/8\alpha \to 1/8 as U+U\to +\infty , should be limited to ωεFt2/U|\omega-\varepsilon_F| \sim t^2/U (for UU large but finite), which shrinks to a single point, ω=εF\omega=\varepsilon_F,in that limit. The consequences for the observation of the Luttinger liquid behaviour in photoemission and inverse photoemission experiments are discussed.Comment: 4 pages, RevTeX, 2 figures on reques

    Phase diagram of the one-dimensional extended Hubbard model with attractive and/or repulsive interactions at quarter filling

    Full text link
    We study the phase diagram of the one dimensional (1D) UVU-V model at quarter filling in the most general case where the on-site and first-neighbour interactions UU and VV can be both attractive and repulsive. The results have been obtained using exact diagonalization of small clusters and variational techniques, as well as exact results in various limits. We have analyzed four properties of the groundstate: i)~whether it is insulating or metallic; \hbox{ii)~whether} it is homogenous or phase separated; iii)~whether it has a spin gap; iv)~whether it has dominant superconducting fluctuations. With eight phases, the resulting phase diagram is unexpectedly rich. The four phases not found in the weak coupling limit are: i) an insulating phase when UU and VV are large enough; ii) a region of phase separation when VV is attractive; iii) another region of phase separation when VV is large enough and UU small; iv) a region with dominant superconducting fluctuations when VV is intermediate and UU small. The actual nature of this last phase, which has pairs but no spin gap, is not fully clear yet.Comment: 24 pages, RevTeX (4 postscript figures attached to the end

    Insulator-Metal Transition in One Dimension Induced by Long-Range Electronic Interactions

    Full text link
    The effects of a long range electronic potential on a one dimensional commensurate Charge Density Wave (CDW) state are investigated. Using numerical techniques it is shown that a transition to a metallic ground state is reached as the range of the electron-electron repulsion increases. In this metallic state, the optical conductivity exhibits a large Drude weight. Possible interpretations of our results are discussed.Comment: 5 pages, Revtex, minor misprints corrected and a reference to earlier work by V. Emery and C. Noguera adde

    Crossover from Luttinger- to Fermi-liquid behavior in strongly anisotropic systems in large dimensions

    Full text link
    We consider the low-energy region of an array of Luttinger liquids coupled by a weak interchain hopping. The leading logarithmic divergences can be re-summed to all orders within a self-consistent perturbative expansion in the hopping, in the large-dimension limit. The anomalous exponent scales to zero below the one-particle crossover temperature. As a consequence, coherent quasiparticles with finite weight appear along the whole Fermi surface. Extending the expansion self-consistently to all orders turns out to be crucial in order to restore the correct Fermi-liquid behavior.Comment: Shortened version to appear in Physical Review Letter

    Non-fermi-liquid single particle lineshape of the quasi-one-dimensional non-CDW metal Li_{0.9}Mo_{6}O_{17} : comparison to the Luttinger liquid

    Full text link
    We report the detailed non-Fermi liquid (NFL) lineshape of the dispersing excitation which defines the Fermi surface (FS) for quasi-one-dimensional Li_{0.9}Mo_{6}O_{17}. The properties of Li_{0.9}Mo_{6}O_{17} strongly suggest that the NFL behavior has a purely electronic origin. Relative to the theoretical Luttinger liquid lineshape, we identify significant similarities, but also important differences.Comment: 5 pages, 3 eps figure

    Deducing correlation parameters from optical conductivity in the Bechgaard salts

    Full text link
    Numerical calculations of the kinetic energy of various extensions of the one-dimensional Hubbard model including dimerization and repulsion between nearest neighbours are reported. Using the sum rule that relates the kinetic energy to the integral of the optical conductivity, one can determine which parameters are consistent with the reduction of the infrared oscillator strength that has been observed in the Bechgaard salts. This leads to improved estimates of the correlation parameters for both the TMTSF and TMTTF series.Comment: 12 pages, latex, figures available from the author

    Spectral properties of one dimensional insulators and superconductors

    Full text link
    Conformal field theory and Bethe ansatz are used to investigate the low energy features of the spectral function in one dimensional models which exhibit a gap in the spin or in the charge excitation spectrum. Exotic behavior is found in the superconducting case, where the Green function displays momentum dependent Luttinger Liquid exponents. The predictions of the formalism are confirmed by Lanczos diagonalizations in the tJtJ model up to 32 sites. These results may be relevant in connection to photoemission experiments in quasi one dimensional insulators or superconductors.Comment: 11 pages , RevTeX , 3 uuencoded picture
    corecore