4 research outputs found
Protocol to image and analyze hippocampal network dynamics in non-anesthetized mouse pups
Summary: Two-photon calcium imaging is a powerful technique that has revolutionized our understanding of how neural circuit dynamics supports different behaviors and cognitive processes. However, performing imaging during development remains challenging. Here, we provide a protocol to image CA1 neurons in mouse pups as well as a pipeline of analysis to analyze and share the data. We describe steps for intracerebroventricular injection, cranial window surgery, two-photon calcium imaging, and analysis of imaging data.For complete details on the use and execution of this protocol, please refer to Dard et al.1 and Denis et al.2 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics
Protocol to image and analyze hippocampal network dynamics in non-anesthetized mouse pups
International audienceTwo-photon calcium imaging is a powerful technique that has revolutionized our understanding of how neural circuit dynamics supports different behaviors and cognitive processes. However, performing imaging during development remains challenging. Here, we provide a protocol to image CA1 neurons in mouse pups as well as a pipeline of analysis to analyze and share the data. We describe steps for intracerebroventricular injection, cranial window surgery, two-photon calcium imaging, and analysis of imaging data
Neuronal hyperexcitability in the Tg2576 mouse model of Alzheimer's disease – the influence of sleep and noradrenergic transmission
International audienceThe link between Alzheimer's disease (AD) and network hypersynchrony-manifesting as epileptic activities-received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients
Extrinsic control of the early postnatal CA1 hippocampal circuits
International audienceThe adult CA1 region of the hippocampus produces coordinated neuronal dynamics with minimal reliance on its extrinsic inputs. By contrast, neonatal CA1 is tightly linked to externally generated sensorimotor activity, but the circuit mechanisms underlying early synchronous activity in CA1 remain unclear. Here, using a combination of in vivo and ex vivo circuit mapping, calcium imaging, and electrophysiological recordings in mouse pups, we show that early dynamics in the ventro-intermediate CA1 are under the mixed influence of entorhinal (EC) and thalamic (VMT) inputs. Both VMT and EC can drive internally generated synchronous events ex vivo. However, movement-related population bursts detected in vivo are exclusively driven by the EC. These differential effects on synchrony reflect the different intrahippocampal targets of these inputs. Hence, cortical and subcortical pathways act differently on the neonatal CA1, implying distinct contributions to the development of the hippocampal microcircuit and related cognitive maps