2,245 research outputs found

    Coherent and generalized intelligent states for infinite square well potential and nonlinear oscillators

    Full text link
    This article is an illustration of the construction of coherent and generalized intelligent states which has been recently proposed by us for an arbitrary quantum system [1][ 1] . We treat the quantum system submitted to the infinite square well potential and the nonlinear oscillators. By means of the analytical representation of the coherent states \`{a} la Gazeau-Klauder and those \`{a} la Klauder-Perelomov, we derive the generalized intelligent states in analytical ways

    Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems

    Full text link
    We introduce a one-parameter generalized oscillator algebra A(k) (that covers the case of the harmonic oscillator algebra) and discuss its finite- and infinite-dimensional representations according to the sign of the parameter k. We define an (Hamiltonian) operator associated with A(k) and examine the degeneracies of its spectrum. For the finite (when k < 0) and the infinite (when k > 0 or = 0) representations of A(k), we construct the associated phase operators and build temporally stable phase states as eigenstates of the phase operators. To overcome the difficulties related to the phase operator in the infinite-dimensional case and to avoid the degeneracy problem for the finite-dimensional case, we introduce a truncation procedure which generalizes the one used by Pegg and Barnett for the harmonic oscillator. This yields a truncated generalized oscillator algebra A(k,s), where s denotes the truncation order. We construct two types of temporally stable states for A(k,s) (as eigenstates of a phase operator and as eigenstates of a polynomial in the generators of A(k,s)). Two applications are considered in this article. The first concerns physical realizations of A(k) and A(k,s) in the context of one-dimensional quantum systems with finite (Morse system) or infinite (Poeschl-Teller system) discrete spectra. The second deals with mutually unbiased bases used in quantum information.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretical as a pape

    Contributions of M. Daoud, F. Gieres and M. Kibler to the "Concise Encyclopedia of Supersymmetry"

    No full text
    Théori

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200

    Commensurate structural modulation in the charge- and orbitally-ordered phase of the quadruple perovskite (NaMn3_3)Mn4_4O12_{12}

    Full text link
    By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition TCOT_{CO}=176 K in the mixed-valence quadruple perovskite (NaMn3_3)Mn4_4O12_{12}. Below TCOT_{CO} we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q =(1/2,0,-1/2) of the CE magnetic order that appears at low temperature, similarly to the case of simple perovskites like La0.5_{0.5}Ca0.5_{0.5}MnO3_3. In the present case, the modulated structure together with the observation of a large entropy change at TCOT_{CO} gives evidence of a rare case of full Mn3+^{3+}/Mn4+^{4+} charge and orbital order consistent with the Goodenough-Kanamori model.Comment: Accepted for publication in Phys. Rev. B Rapid Communication

    The Moyal Bracket in the Coherent States framework

    Full text link
    The star product and Moyal bracket are introduced using the coherent states corresponding to quantum systems with non-linear spectra. Two kinds of coherent state are considered. The first kind is the set of Gazeau-Klauder coherent states and the second kind are constructed following the Perelomov-Klauder approach. The particular case of the harmonic oscillator is also discussed.Comment: 13 page
    corecore