27 research outputs found

    Free behind bars: Effects of browsing exclusion on the growth and regeneration of Zelkova abelicea

    Get PDF
    Abstract Caprine overbrowsing is a main threat to trees of pastoral mountain woodlands in the Mediterranean region of Europe. In this study, we assess the impact of browsing exclusion on the growth and regeneration of the endangered Zelkova abelicea, a Paleogene relict tree endemic to Crete (Greece). Shoot elongation, height growth and natural regeneration were monitored during two to five years in 31 fenced plots across the distribution range of the species. We found that in the absence of browsing pressure, Z. abelicea produces shoots on average two times longer than when browsed, therefore clearly demonstrating the negative impact of current browsing pressure on the growth performance of the species. Shoot elongation and height growth were maximal in most plots during the first two years following fencing, after which growth rates decreased. The proportion of trees that reached a height considered out of reach of caprine browsing had more than doubled already after four years, although this was dependent on initial tree height. Shoot elongation and height growth were positively correlated with tree height, and smaller trees took more time to reach a specific height. Seedlings were only found in three fenced plots as well as in two control browsed areas during a single year and only in western Crete. This underlines the possible strong and concerning impact of climatic factors on seed formation as well as on seedling growth and survival, although site specificities such as stand structure and micro-topography should also be considered. Our findings have important implications for conservation actions, as they can help choose which stands and which individuals to fence in priority for efficient long-term conservation

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Characteristics of the soil seed bank in Mediterranean temporary ponds and its role in ecosystem dynamics

    Get PDF
    11 pages, 3 figures, 2 tables, 51 references.Species in temporary ponds overcome periods of unfavorable weather conditions by building up a large seed bank. With this strategy, the species diversity of ponds is preserved and information on their dynamics and structure is retained. Little is known about the characteristics, spatial patterns and role in the vegetation dynamics of the soil seed banks of Mediterranean temporary ponds, which are regarded as priority habitats under protection. We studied two sites of western Crete: Omalos, a mountain plateau at 1,060 m a.s.l. and Elafonisos, located near the coast at 60 m a.s.l. The seed bank was surveyed along transects using the germination method. Aboveground vegetation was measured on quadrats along the same transects. Canonical Correspondence Analysis (CCA) was run to define the zonation patterns. High density and species richness were recorded in both sites, with an average of 75,662 seeds/m2 found in Omalos and 22,941 seeds/m2 in Elafonisos. The community composition of both sites was remarkably different but in both locations perennial species were inconspicuous while annuals, prevailed in the seed banks. An important array of protected or rare species as well as several others which were absent from the vegetation were hosted in the soil seed banks, thereby rendering a low similarity between their composition. Soil seed banks in these ecosystems indicated a spatial heterogeneity that mirrored the aboveground vegetation distribution, sorted along the moisture gradient by their tolerance to flooding. Soil seed banks play a key role in the vegetation recovery after summer drought. The acts of preserving the soil seed bank and ensuring a transient flooding regime are essential to protect the unique vegetation communities of Mediterranean temporary ponds.The work presented in this paper was carried out in the framework of the LIFE-Nature project entitled ‘‘Actions for the Conservation of the Mediterranean Temporary Ponds in Crete’’ (LIFE04 NAT/GR/000105) and a scholarship granted to the first author by the Mediterranean Agronomic Institute of Chania, Greece (MAICh-CIHEAM).Peer reviewe
    corecore