10 research outputs found

    Ion and fluid transport properties of small airways in cystic fibrosis

    Get PDF
    Rationale: Small airways constitute amajor site of pathology in cystic fibrosis (CF) and provide most of the surface area of the conducting airways of the lung. Little is known, however, about the impact of CF on ion and fluid transport in small (bronchiolar) airways. Objectives: To describe the ion and fluid transport properties of CF bronchiolar epithelium. Methods: Primary cultures of human bronchial and bronchiolar (non-CF and CF) epithelial cells were obtained. The bioelectric properties were studied in Ussing chambers and the airway surface liquid (ASL) height was measured with confocal microscopy. Main Results: Primary cultures of ΔF508 CF bronchiolar epithelial cells displayed higher transepithelial resistance than non-CF cultures, whereas baseline short circuit current and amiloride-inhibitable short circuit current were similar in both preparations. The ASL height was significantly smaller in CF compared with non-CF preparations. In the presence of amiloride, addition of forskolin increased short circuit current in non-CF but not in CF bronchiolar cultures, and the ATP-induced increase in short circuit current was lower in CF than in non-CF cultures. Non-CF bronchiolar preparations displayed larger short circuit current and fluid secretion in responses to forskolin than non-CF bronchial preparations, suggesting that CFTR-dependent Cl- transport may play a more important role in the regulation of fluid transport in small airways than in large airways. Conclusion: In CF small airways, defective Cl- secretion combined with unregulated (persistent) Na+ absorption results in ASLdepletion

    Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene transfer to airway epithelium: effect of acyl chain length

    Get PDF
    Extent: 11p.Background Poor gene transfer efficiency has been a major problem in developing an effective gene therapy for cystic fibrosis (CF) airway disease. Lysophosphatidylcholine (LPC), a natural airway surfactant, can enhance viral gene transfer in animal models. We examined the electrophysiological and physical effect of airway pre-treatment with variants of LPC on lentiviral (LV) vector gene transfer efficiency in murine nasal airways in vivo. Methods Gene transfer was assessed after 1 week following nasal instillations of a VSV-G pseudotype LV vector pre-treated with a low and high dose of LPC variants. The electrophysiological effects of a range of LPC variants were assessed by nasal transepithelial potential difference measurements (TPD) to determine tight junction permeability. Any physical changes to the epithelium from administration of the LPC variants were noted by histological methods in airway tissue harvested after 1 hour. Results Gene transduction was significantly greater compared to control (PBS) for our standard LPC (palmitoyl/stearoyl mixture) treatment and for the majority of the other LPC variants with longer acyl chain lengths. The LPC variant heptadecanoyl also produced significantly greater LV gene transfer compared to our standard LPC mixture. LV gene transfer and the transepithelial depolarization produced by the 0.1% LPC variants at 1 hour were strongly correlated (r2 = 0.94), but at the 1% concentration the correlation was less strong (r2 = 0.59). LPC variants that displayed minor to moderate levels of disruption to the airway epithelium were clearly associated with higher LV gene transfer. Conclusions These findings show the LPC variants effect on airway barrier function and their correlation to the effectiveness of gene expression. The enhanced expression produced by a number of LPC variants should provide new options for preclinical development of efficient airway gene transfer techniques.Patricia Cmielewski, Don S. Anson and David W. Parson

    Stimulation of salivary secretion in vivo by CFTR potentiators in Cftr(+/+) and Cftr(-/-) mice

    No full text
    International audiencePhysiologically, salivary secretion is controlled by cholinergic and adrenergic pathways but the role of ionic channels in this process is not yet clearly understood. In cystic fibrosis (CF), most exocrine glands failed to response to β-adrenergic agonists. Methods To determine the implication of CFTR in this process, we measured in vivo the salivary secretion of Cftr+/+ and Cftr−/− mice in the presence of 2 water-soluble benzo[c]quinolizinium derivatives; MPB-07 a potentiator of CFTR Cl− channel and MPB-05 an inactive analogue. We also used genistein and its vehicle ethanol to confirm the implication of CFTR in salivary secretion. Results We showed that subcutaneous injection of MPB-07 in the mice cheek enhanced in a dose dependent manner the isoprenaline-induced salivary secretion in Cftr+/+ but not in Cftr−/− mice. By contrast, MPB-05 did not activate the salivary secretion in Cftr+/+ mice. The CFTR activator genistein (50 μM) significantly potentiated the secretory response of Cftr+/+ mice whereas its vehicle, ethanol, had no effect. Conclusions These results show for the first time in vivo pharmacological stimulation of salivary secretion by a water-soluble CFTR potentiator, MPB-07 and by the isoflavone, ethanol-soluble genistein and suggest that this chloride channel plays an important role in salivary gland physiology

    Identification of a novel water-soluble activator of wild-type and F508del CFTR: GPact-11a.

    No full text
    International audienceOne of the major therapeutic strategy in cystic fibrosis aims at developing modulators of cystic fibrosis transmembrane conductance regulator (CFTR) channels. We recently discovered methylglyoxal alpha-aminoazaheterocycle adducts, as a new family of CFTR inhibitors. In a structure-activity relationship study, we have now identified GPact-11a, a compound able not to inhibit but to activate CFTR. Here, we present the effect of GPact-11a on CFTR activity using in vitro (iodide efflux, fluorescence imaging and patch-clamp recordings), ex vivo (short-circuit current measurements) and in vivo (salivary secretion) experiments. We report that GPact-11a: 1) is an activator of CFTR in several airway epithelial cell lines; 2) activates rescued F508del-CFTR in nasal, tracheal, bronchial, pancreatic cell lines and in human CF ciliated epithelial cells, freshly dissociated from lung samples; 3) stimulates ex vivo the colonic chloride secretion and increases in vivo the salivary secretion in cftr(+/+) but not cftr(-/-) mice; and 4) is selective for CFTR because its effect is inhibited by CFTR(inh)-172, GlyH-101, glibenclamide and GPinh-5a. To conclude, this work identifies a selective activator of wild-type and rescued F508del-CFTR. This nontoxic and water-soluble agent represents a good candidate, alone or in combination with a F508del-CFTR corrector, for the development of a CFTR modulator in cystic fibrosis
    corecore