613 research outputs found

    Crisis Management and Communication Strategies: RUSAL’s Case

    Get PDF
    No company is immune to crisis situations, an affirmation which, despite its triviality, is undeniably true. However, from the early 2014, such statement may have become even more true to Russian corporations, as the annexation of the Crimean Peninsula gave start to rounds of economic sanctions that are still perpetrated today. Such measures, which were initiated in response to the Kremlin’s political maneuvers, have hit a number of Russian companies, and increased the degree of uncertainty in which they have to operate, as they see economic restriction’s impact not only on the business activity tangible factors—i.e., economic rewards, service, and performance—but also on intangible factors—i.e., image and reputation—as well. Crises are integral parts of all world systems, unfortunately. While they are a theoretically well-understood issue, in practice, crises are perceived as a very painful phenomenon. A crisis can be compared to riding a roller coaster. First, as we gain speed and climb up the tracks we are filled with a sense of joy and delight. These feelings are quickly replaced with anticipation, panic, and fear as the roller coaster plunges into the “abyss.

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → ÎŒ+Ό−)/B(Bs → ÎŒ+Ό−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Analysis of the practice of establishing the size of regional coefficients to the wages of workers in areas with unfavourable natural and climatic conditions and proposals for its improvement

    No full text
    District coefficients are designed to compensate for differences in the cost of living of the population in the northern and eastern regions compared to the central and southern regions due to the unequal needs of the population. On the basis of the content analysis of the legislation the authors showed that in order to improve the legislation on regional coefficients to the wages of workers in areas with unfavorable natural and climatic conditions for the population, it is necessary to prepare new methodological approaches to determining the size of regional coefficients on the basis of the minimum (recovery) budget or the minimum consumer budget and to introduce the practice of establishing uniform regional coefficients for the wages of all employees of enterprises, organizations and institutions in the constituent entity of the Russian Federation or in municipal districts and urban districts within the constituent entity of the Russian Federation

    TYPES OF COMPOUND WORD-FORMATION IN MEDICAL TERMINOLOGY (ON THE MATERIAL OF THE GERMAN LANGUAGE)

    No full text
    The aim of the study is to optimize the classification of the types of the compound word-building with components of Greek and Latin origin; the research is based on the sample of 2882 substantive compound terms of the German clinical terminology. The researches apply the descriptive analytical and quantitative methods to the study. It is stated, that the words with complex morphemic structures can be formed by composite and non-composite types of word-building. The paper presents the complex classification of different ways of the compound word-formation considering following criteria: the type and the base of the word-formation process (morphological and morphological- and-syntactic ways of the compound word-formation), the number of the word-building processes, taking place within the compound word-formation (pure and mixed types of the compound word-formation). The analysis of the material reveals the dominance of the morphological compound word-building. In the medical terminology the following subtypes of the compound word-formation are distinguished: stem + terminological element, term + term, stem + term, with the latter two to be the most productive.The use of terminological units as structural elements of compounds and their employment in classification allows to avoid excessive extension of stock of morphemes used in the so-called intermediate zone. Further arrangement of word-building patterns is carried out according to the genetic criterion. In German clinical terminology the dominance of hybrid terms with German components has been established; among homogeneous compounds the terms consisting of Greek rather than Latin or German components are more widely represented. The proposed classifications are applicable to the material of medical terminologies in other languages and enable their accurate comparison

    Economics of ecological and biological development and labor market of agro-industrial complex

    No full text
    The agro-industrial complex faces lots of challenges which brake its efficient economic, ecological and biological development and labor market functioning. Applying statistical analysis of the current indicators we estimate the influence of the negative factors and propose the possible solution. Despite its huge potential, the Russian agro-industrial complex is currently in a state of deep systemic crisis. The development of the agro-industrial complex is directly related to the quality of life of the rural population and the situation in the labor market. The possible solution is to develop engineering, social and transport infrastructure and improve the situation in the labor market in the rural areas. It is the state regulation and support of the agro-industrial complex that is currently the fundamental point of solving existing problems. To maintain efficiency in the agricultural sector, state regulation and support are not just necessary, but unavoidable. For effective operation and systematic development of the agro-industrial complex, it is necessary to form a program of state support for the sector in order to attract investment and innovation

    Impact of Institutions and Human Capital on CO2 Emissions in EU Transition Economies

    No full text
    Environmental degradation is one of the most significant problems of the globalized world. This paper explores the impact of institutional development and human capital on CO2 emissions in 11 EU transition economies over the period of 2000&ndash;2018 through co-integration analysis. The co-integration analysis revealed that human capital negatively affected CO2 emissions in Croatia, the Czech Republic, Hungary, and Slovenia, and that institutions had a negative impact on CO2 emissions in the Czech Republic. However, both institutions and human capital positively affected CO2 emissions in Latvia and Lithuania
    • 

    corecore