102 research outputs found

    Numerical Modelling of Radiogenic Ingrowth and Diffusion of Pb in Apatite Inclusions with Variable Shape and U-Th Zonation

    Get PDF
    The fundamental premise of apatite U-Th-Pb thermochronology is that radiogenic Pb is redistributed by volume diffusion. In practice, it is often additionally assumed that crystals (1) lose radiogenic Pb to an infinite reservoir, (2) have a simple geometry and (3) are chemically homogeneous. Here we explore the significance of the latter three assumptions by numerical modelling of Pb radiogenic ingrowth and diffusion in apatite inclusions within other minerals. Our results indicate that the host minerals are likely to hamper diffusive Pb loss from the apatite inclusions by limiting the Pb flux across their boundaries, and thus the thermal histories that are reconstructed assuming a fully open boundary may be significantly inaccurate, precluding a meaningful interpretation. We also find that when apatite boundaries are flux-limited, heterogeneities in U and Th concertation within apatite have subordinate effect on bulk-grain U-Th-Pb dates and can cause intra-grain U-Th-Pb dates to increase towards the boundaries. Finally, we show that it is important to correctly account for crystal geometry when modelling intra-grain U-Th-Pb dates. We suggest that the effect of surrounding minerals on diffusive Pb loss from apatite (and loss of other radiogenic isotopes from other minerals) should be examined more closely in future research

    Inclusions of Amorphous and Crystalline SiO 2 in Minerals from Itrongay (Madagascar) and Other Evidence for the Natural Occurrence of Hydrosilicate Fluids

    Get PDF
    Experimental studies increasingly often report low-temperature (200−800 °C) and low-pressure (0.05−3 kbar) hydrosilicate fluids with >40 wt.% of SiO2 and >10 wt.% of H2O. Compositionally similar fluids were long suggested to potentially exist in natural systems such as pegmatites and hydrothermal veins. However, they are rarely invoked in recent petrogenetic models, perhaps because of the scarcity of direct evidence for their natural occurrence. Here we review such evidence from previous works and add to this by documenting inclusions of hydrosilicate fluids in quartz and feldspar from Itrongay. The latter comprise opal-A, opal-CT, moganite and quartz inclusions that frequently contain H2O and have negative crystal shapes. They coexist with inclusions of CO2- and H2O-rich fluids and complex polycrystalline inclusions containing chlorides, sulphates, carbonates, arsenates, oxides, hydroxides and silicates, which we interpret as remnants of saline liquids. Collectively, previous studies and our new results indicate that hydrosilicate fluids may be common in the Earth’s crust, although their tendency to transform into quartz upon cooling and exhumation renders them difficult to recognise. These data warrant more comprehensive research into the nature of such hydrosilicate fluids and their distribution across a wide range of pressure and temperature conditions and geological systems

    A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players

    Get PDF
    Pickering, C, Suraci, B, Semenova, EA, Boulygina, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Leońska-Duniec, A, Pająk, B, Chycki, J, Moska, W, Lulińska-Kuklik, E, Dornowski, M, Maszczyk, A, Bradley, B, Kana-ah, A, Cięszczyk, P, Generozov, EV, and Ahmetov, II. A genome-wide association study of sprint performance in elite youth football players. J Strength Cond Res XX(X): 000-000, 2019-Sprint speed is an important component of football performance, with teams often placing a high value on sprint and acceleration ability. The aim of this study was to undertake the first genome-wide association study to identify genetic variants associated with sprint test performance in elite youth football players and to further validate the obtained results in additional studies. Using micro-array data (600 K-1.14 M single nucleotide polymorphisms [SNPs]) of 1,206 subjects, we identified 12 SNPs with suggestive significance after passing replication criteria. The polymorphism rs55743914 located in the PTPRK gene was found as the most significant for 5-m sprint test (p = 7.7 × 10). Seven of the discovered SNPs were also associated with sprint test performance in a cohort of 126 Polish women, and 4 were associated with power athlete status in a cohort of 399 elite Russian athletes. Six SNPs were associated with muscle fiber type in a cohort of 96 Russian subjects. We also examined genotype distributions and possible associations for 16 SNPs previously linked with sprint performance. Four SNPs (AGT rs699, HSD17B14 rs7247312, IGF2 rs680, and IL6 rs1800795) were associated with sprint test performance in this cohort. In addition, the G alleles of 2 SNPs in ADRB2 (rs1042713 & rs1042714) were significantly over-represented in these players compared with British and European controls. These results suggest that there is a genetic influence on sprint test performance in footballers, and identifies some of the genetic variants that help explain this influence

    Inclusions of Amorphous and Crystalline SiO2 in Minerals from Itrongay (Madagascar) and Other Evidence for the Natural Occurrence of Hydrosilicate Fluids

    No full text
    Experimental studies increasingly often report low-temperature (200–800 °C) and low-pressure (0.05–3 kbar) hydrosilicate fluids with >40 wt.% of SiO2 and >10 wt.% of H2O. Compositionally similar fluids were long suggested to potentially exist in natural systems such as pegmatites and hydrothermal veins. However, they are rarely invoked in recent petrogenetic models, perhaps because of the scarcity of direct evidence for their natural occurrence. Here we review such evidence from previous works and add to this by documenting inclusions of hydrosilicate fluids in quartz and feldspar from Itrongay. The latter comprise opal-A, opal-CT, moganite and quartz inclusions that frequently contain H2O and have negative crystal shapes. They coexist with inclusions of CO2- and H2O-rich fluids and complex polycrystalline inclusions containing chlorides, sulphates, carbonates, arsenates, oxides, hydroxides and silicates, which we interpret as remnants of saline liquids. Collectively, previous studies and our new results indicate that hydrosilicate fluids may be common in the Earth’s crust, although their tendency to transform into quartz upon cooling and exhumation renders them difficult to recognise. These data warrant more comprehensive research into the nature of such hydrosilicate fluids and their distribution across a wide range of pressure and temperature conditions and geological systems

    Thermochronology of Alkali Feldspar and Muscovite at T > 150 °C Using the <sup>40</sup>Ar/<sup>39</sup>Ar Method: A Review

    No full text
    The 40Ar/39Ar method applied to K-feldspars and muscovite has been often used to construct continuous thermal history paths between ~150–600 °C, which are usually applied to structural and tectonic questions in many varied geological settings. However, other authors contest the use of 40Ar/39Ar thermochronology because they argue that the assumptions are rarely valid. Here we review and evaluate the key assumptions, which are that (i) 40Ar is dominantly redistributed in K-feldspars and muscovite by thermally-driven volume diffusion, and (ii) laboratory experiments (high temperatures and short time scales) can accurately recover intrinsic diffusion parameters that apply to geological settings (lower temperatures over longer time scales). Studies do not entirely negate the application of diffusion theory to recover thermal histories, although they reveal the paramount importance of first accounting for fluid interaction and secondary reaction products via a detailed textural study of single crystals. Furthermore, an expanding database of experimental evidence shows that laboratory step-heating can induce structural and textural changes, and thus extreme caution must be made when extrapolating laboratory derived rate loss constants to the geological past. We conclude with a set of recommendations that include minimum sample characterisation prior to degassing, an assessment of mineralogical transformations during degassing and the use of in situ dating

    Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise

    No full text
    Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors

    The Composition of Melt Inclusions in Minerals from Tephra of the Soil–Pyroclastic Cover of Simushir Island (Central Kuril Islands)

    No full text
    The compositions of approximately 70 naturally quenched melt inclusions in olivine, clinopyroxene, orthopyroxene, and plagioclase phenocrysts from tephra of the soil–pyroclastic cover of Simushir Island (Central Kuril Islands) were studied. The concentrations of the major rock-forming components, H2O, S, and Cl were analyzed in inclusions. The reconstructed melts contain 48.6–78.4 wt % SiO2, 0.3–8.26 wt % MgO, and 0.12–1.72 wt % K2O. The concentration of S and Cl in the melts changes regularly with increasing SiO2 content: from 0.14 to ~0.02 wt % S and from ~0.05 to ~0.28 wt % Cl. The content of H2O in parental melts is 4.2–4.5 wt %

    A technique to visualise the urethral meatus in difficult male catheterisations.

    No full text
    Goldschmidt 2019, Barcelona, Spain, 18-23 August 2019Constraining how the temperature of rocks changes with time is an important aspect of many geological studies. Geoscientists commonly address this problem by interpreting step-heating Ar-Ar data obtained from feldspars [e.g. 1 and therein] and increasingly more often by interpreting U-Pb data obtained from apatite [e.g. 2 and therein]. Reconstruction of thermal histories using these approaches is underpinned by the assumption that the redistribution of radiogenic Ar in feldspars and Pb in apatite over geological timescales is controlled by volume diffusion. However, is this assumption always valid? Here we revisit the mechanisms of Ar redistribution in famous gem-quality alkali feldpsar from Itrongay pegmatite by combining in situ Ar-Ar dating with cathodoluminescence imaging. Previous in situ Ar-Ar studies of Itrongay feldspar suggested that it has partially lost radiogenic Ar by diffusion [3, 4], supporting the underlying assumption of feldspar ArAr thermochronology. However, our results indicate that this feldspar records a protracted history of interaction with fluids between ~475 Ma (dates in the core) and ~180 Ma (dates at the rim), casting doubt on previous interpretations. Alongside, we have obtained in situ U-Pb dates of three apparently protogenetic apatite inclusions within the studied feldspar crystal. These yield older dates than feldpsar (~490- 535 Ma), and in contrast to feldspar seem to have been partially reset by diffusion, possibly prior to their entrapment. [1] Harrison and Lovera (2013) GSL Spec. Pub., 378, 91- 106; [2] Paul et al. (2018) GCA, 288, 275-300 [3] Flude et al. (2014) Geol. Soc. London Spec. Pub., 378, 265–275; [4] Arnaud and Kelley (1997) GCA, 61, 3227–3255.Science Foundation Irelan
    corecore