65 research outputs found
A discrete-time Multiple Event Process Survival Mixture (MEPSUM) model.
Traditional survival analysis was developed to investigate the occurrence and timing of a single event, but researchers have recently begun to ask questions about the order and timing of multiple events. A multiple event process survival mixture model is developed here to analyze non-repeatable events measured in discrete-time that may occur at the same point in time. Building on both traditional univariate survival analysis and univariate survival mixture analysis, the model approximates the underlying multivariate distribution of hazard functions via a discrete-point finite mixture in which the mixing components represent prototypical patterns of event occurrence. The model is applied in an empirical analysis concerning transitions to adulthood, where the events under study include parenthood, marriage, beginning full-time work, and obtaining a college degree. Promising opportunities, as well as possible limitations of the model and future directions for research are discussed
Doses of Nearby Nature Simultaneously Associated with Multiple Health Benefits
This is the final version of the article. Available from MDPI via the DOI in this record.Exposure to nature provides a wide range of health benefits. A significant proportion of
these are delivered close to home, because this offers an immediate and easily accessible
opportunity for people to experience nature. However, there is limited information to guide
recommendations on its management and appropriate use. We apply a nature dose-response
framework to quantify how exposure to nearby nature simultaneously potentially associates with
multiple health benefits. We surveyed c.1000 respondents in Southern England, UK, to determine
relationships between (a) the frequency and duration (time spent in private green space), and
intensity (quantity of neighbourhood vegetation cover) of nature dose, and, (b) mental, physical
and social health, physical behaviour and nature orientation. We then modelled dose-response
relationships between dose type and self-reported depression. We demonstrate positive
relationships between nature dose and mental and social health, increased physical behaviour and
nature orientation. Dose-response analysis showed that lower levels of depression were associated
with minimum thresholds of weekly nature dose. Nearby nature is associated with quantifiable
health benefits, with potential for lowering the human and financial costs of ill health.
Dose-response analysis has potential to guide minimal and optimal recommendations on the
management and use of nearby nature for preventative healthcare
Nature-Based Interventions for Improving Health and Wellbeing : The Purpose, the People and the Outcomes
Engagement with nature is an important part of many people's lives, and the health and wellbeing benefits of nature-based activities are becoming increasingly recognised across disciplines from city planning to medicine. Despite this, urbanisation, challenges of modern life and environmental degradation are leading to a reduction in both the quantity and the quality of nature experiences. Nature-based health interventions (NBIs) can facilitate behavioural change through a somewhat structured promotion of nature-based experiences and, in doing so, promote improved physical, mental and social health and wellbeing. We conducted a Delphi expert elicitation process with 19 experts from seven countries (all named authors on this paper) to identify the different forms that such interventions take, the potential health outcomes and the target beneficiaries. In total, 27 NBIs were identified, aiming to prevent illness, promote wellbeing and treat specific physical, mental or social health and wellbeing conditions. These interventions were broadly categorized into those that change the environment in which people live, work, learn, recreate or heal (for example, the provision of gardens in hospitals or parks in cities) and those that change behaviour (for example, engaging people through organized programmes or other activities). We also noted the range of factors (such as socioeconomic variation) that will inevitably influence the extent to which these interventions succeed. We conclude with a call for research to identify the drivers influencing the effectiveness of NBIs in enhancing health and wellbeing.Peer reviewe
Satellite Tracking Reveals Long Distance Coastal Travel and Homing by Translocated Estuarine Crocodiles, Crocodylus porosus
Crocodilians have a wide distribution, often in remote areas, are cryptic, secretive and are easily disturbed by human presence. Their capacity for large scale movements is poorly known. Here, we report the first study of post-release movement patterns in translocated adult crocodiles, and the first application of satellite telemetry to a crocodilian. Three large male Crocodylus porosus (3.1â4.5 m) were captured in northern Australia and translocated by helicopter for 56, 99 and 411 km of coastline, the last across Cape York Peninsula from the west coast to the east coast. All crocodiles spent time around their release site before returning rapidly and apparently purposefully to their capture locations. The animal that circumnavigated Cape York Peninsula to return to its capture site, travelled more than 400 km in 20 days, which is the longest homeward travel yet reported for a crocodilian. Such impressive homing ability is significant because translocation has sometimes been used to manage potentially dangerous C. porosus close to human settlement. It is clear that large male estuarine crocodiles can exhibit strong site fidelity, have remarkable navigational skills, and may move long distances following a coastline. These long journeys included impressive daily movements of 10â30 km, often consecutively
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Testing general rules in landscape ecology: Understanding the effects of landscape pattern on the avifauna of South East Queensland
Human land-use has a profound influence on wildlife populations; habitat loss can directly decrease population size and carrying capacity, and isolation of the remaining populations can increase their extinction probability. Landscape ecology as a discipline has worked towards creating general rules for the way species respond to landscape change. These rules include, for example, estimates of thresholds at which populations respond more severely to landscape level variables, or general theories as to which species will be more susceptible to landscape change. The demand for these generalisations is driven by the need for inexpensive, rapid and effective methods to manage problems caused by landscape change. The question as to whether general rules are accurate or useful solicits mixed responses from scientists and conservation managers. The most cited reason for this mixed response is the empirical inconsistencies in the way species respond to landscape change. In this thesis I suggest that general rules must be tested in an a priori fashion to directly assess their utility and assist in their translation from theory to practical tool. My primary aim is to test general rules in landscape ecology through creating a priori models; these models are based on ecological theories and existing species and landscape information. My secondary aim is to enhance the understanding of landscape level habitat fragmentation problems for birds in South East Queensland, Australia. I address these aims within four main data chapters as summarised below, where Chapter 1 is a broad introduction to the topic. Chapter 2 asks the question: can general rules and threshold theory be used to predict bird species patch occupancy in a fragmented landscape? I create a simple decision tree model based on threshold theories in landscape ecology, and use this to predict presence or absence of 17 forest bird species in a largely agricultural landscape. This decision tree is broadly based on theoretical patch area and connectivity threshold estimates, and incorporates basic species specific information (such as habitat suitability and mobility). I test this model using a presence/absence survey data set. The process of assessing for which species the model did not work is revealing: I show that the accuracy of âpresentâ predictions is somewhat compromised for habitat specialist species and âabsentâ predictions are compromised for generalist species. Through creating the âoptimalâ decision tree models for these species I show that these inaccuracies are likely to arise from vegetation mapping problems, including the lack of a âhabitat qualityâ measure. The study therefore highlights the need for high quality vegetation maps to carry out effective planning. For the majority of species I achieve reasonable predictive success. This study provides hope that general rules have some predictive ability in landscape ecology, and highlights the value of testing models to assess why, and for which species general rules may or may not work. In Chapter 3, I assess the utility of basic ecological principles for predicting the relative value of vegetation patches for specific bird species, focusing on a highly altered urban landscape. I create a model based on the mechanisms expected to be driving species abundance within urban landscapes where most sensitive bird species are likely to be already lost. The model states that a bird species will be more abundance in areas where the vegetation structure matches a species foraging height requirements; however, this effect will be moderated by the landscape context of the patch. From this model I create an index to quantify and rank the predicted value of patches for 30 species of interest in unmanaged and revegetated urban sites, in Brisbane city, Australia. I test the model using bird abundance data, and show that it achieved a reasonable level of predictive accuracy. The model presented within this study is significant as it has relatively low complexity and limited data requirements, yet provides a means to assess how altering the landscape context and vegetation structure within a patch may enhance the abundance of bird species of interest. With further development, the relative simplicity of the model should make it easy to use for land managers. In Chapter 4 I aim to examine how landscape features influence spatial genetic relatedness patterns at a fine, within-population scale on bird species with different life-history traits. I argue that individual level movement characteristics (particularly dispersal routes) in a variable landscape will drive these spatial genetic patterns; thus I create an a priori model based on this theory to make more specific quantifiable predictions of relatedness patterns. I use animal movement theory to deduce these movement characteristics (particularly the strength of avoidance of habitat boundaries) for species with different life-history traits, and apply the model for two closely related passerine bird species which co-occur within South East Queensland (the yellow-throated scrubwren, Sericornis citreogularis, a habitat specialist; and the white-browed scrubwren, Sericornis frontalis, a habitat generalist). I test these models using data on pairwise genetic distances between individuals of each species. The key outcome of this study is that the genetic data supports my predictions that individual level movement characteristics are a mechanistic driver of within-population spatial genetic patterns. For the habitat specialist bird species, the genetic data supported a model which incorporated a strong avoidance response to habitat boundaries and for the generalist species no response to habitat boundaries. This study takes a novel approach to an individual-based genetics study, making specific quantifiable predictions of how a species may be impacted by different landscape features. This research could have significant implications for conservation management, particularly for understanding and managing population responses to a changing landscape, and the early stages of fragmentation. In Chapter 5 I address the question of whether urban revegetation is more successful if it is used to extend the area of existing vegetation, or enhance connectivity in the landscape. This study is novel; for instead of assessing the factors influencing the extinction of a species in a patch, I assess the factors influencing colonisation. Using bird survey data, I use hierarchical partitioning and model selection approaches to determine the relative effect of connectivity and patch area on bird species richness and abundance in revegetated patches. The key finding was that connectivity provided better model fit for bird species richness, and total patch area and connectivity was better for mean bird abundance. My results suggest that the conservation goals of revegetation efforts, particularly in an urban landscape, must be considered when planning a revegetation program. Using revegetation to increase patch area may be the most effective approach for ensuring species persistence over time (i.e. abundance). However, to attract more species into an area enhancing the total area connected in the landscape may be a better approach. In this thesis I explicitly test general rules and theories in landscape ecology within a priori predictive models. Through their generality, the models I develop are potentially suitable for application in other ecosystems. The process of synthesising these models in a simple form, and testing them in a real landscape was revealing. I was able to examine where some general rules do not work, and also where they may not apply or need adjusting. I strived to create models that are easy to use and understand, particularly within Chapters 2 and 4, by trading off simplicity and accuracy. The models produce accurate results to the point that they are arguably valuable tools for landscape managers. This is achieved without compromising their accessibility, and so the research has the potential to transcend the gap between science and real world utility
A review of the benefits of nature experiences: more than meets the eye
Evidence that experiences of nature can benefit people has accumulated rapidly. Yet perhaps because of the domination of the visual sense in humans, most research has focused on the visual aspects of nature experiences. However, humans are multisensory, and it seems likely that many benefits are delivered through the non-visual senses and these are potentially avenues through which a physiological mechanism could occur. Here we review the evidence around these lesser studied sensory pathwaysâthrough sound, smell, taste, touch, and three non-sensory pathways. Natural sounds and smells underpin experiences of nature for many people, and this may well be rooted in evolutionary psychology. Tactile experiences of nature, particularly beyond animal petting, are understudied yet potentially fundamentally important. Tastes of nature, through growing and consuming natural foods, have been linked with a range of health and well-being benefits. Beyond the five senses, evidence is emerging for other non-visual pathways for nature experiences to be effective. These include ingestion or inhalation of phytoncides, negative air ions and microbes. We conclude that (i) these non-visual avenues are potentially important for delivering benefits from nature experiences; (ii) the evidence base is relatively weak and often based on correlational studies; and (iii) deeper exploration of these sensory and non-sensory avenues is needed
- âŠ