23 research outputs found
Building consensus around the assessment and interpretation of Symbiodiniaceae diversity
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.journal articl
A communal catalogue reveals Earth’s multiscale microbial diversity
Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
A communal catalogue reveals Earth's multiscale microbial diversity
Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
Building consensus around the assessment and interpretation of Symbiodiniaceae diversity
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships
Trends in Extinction Risk for Imperiled Species in Canada
Protecting and promoting recovery of species at risk of extinction is a critical component of biodiversity conservation. In Canada, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) determines whether species are at risk of extinction or extirpation, and has conducted these assessments since 1977. We examined trends in COSEWIC assessments to identify whether at-risk species that have been assessed more than once tended to improve, remain constant, or deteriorate
in status, as a way of assessing the effectiveness of biodiversity conservation in Canada. Of 369 species that met our criteria for examination, 115 deteriorated, 202 remained unchanged, and 52 improved in status. Only 20 species (5.4%) improved to the point where they were ‘not at risk’, and five of those were due to increased sampling efforts rather than an increase in population size. Species outcomes were also dependent on the severity of their initial assessment; for example, 47% of
species that were initially listed as special concern deteriorated between assessments. After receiving an at-risk assessment by COSEWIC, a species is considered for listing under the federal Species at Risk Act (SARA), which is the primary national tool that mandates protection for at-risk species. We examined whether SARA-listing was associated with improved COSEWIC assessment outcomes relative to unlisted species. Of 305 species that had multiple assessments and were SARAlisted, 221 were listed at a level that required identification and protection of critical habitat; however, critical habitat was fully identified for only 56 of these species. We suggest that the Canadian government should formally identify and protect critical habitat, as is required by existing legislation. In addition, our finding that at-risk species in Canada rarely recover leads us to recommend that every effort be made to actively prevent species from becoming at-risk in the first place
Recommended from our members
Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners
Climate change–amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected. Here, we tracked the symbiotic associations of reef-building corals for 6 years through a prolonged heatwave, including known survivorship for 79 of 315 colonies. Coral genetics strongly predicted survival of the ubiquitous coral, Porites (massive growth form), with variable survival (15 to 61%) across three morphologically indistinguishable—but genetically distinct—lineages. The heatwave also disrupted strong associations between these coral lineages and their algal symbionts (family Symbiodiniaceae), with symbiotic turnover in some colonies, resulting in reduced specificity across lineages. These results highlight how heatwaves can threaten cryptic genotypes and decouple otherwise tightly coevolved relationships between hosts and symbionts.
Marine heatwaves differentially impact cryptic coral lineages and decouple tight relationships between host and symbiont
Global patterns and impacts of El Niño events on coral reefs: A meta-analysis
<div><p>Impacts of global climate change on coral reefs are being amplified by pulse heat stress events, including El Niño, the warm phase of the El Niño Southern Oscillation (ENSO). Despite reports of extensive coral bleaching and up to 97% coral mortality induced by El Niño events, a quantitative synthesis of the nature, intensity, and drivers of El Niño and La Niña impacts on corals is lacking. Herein, we first present a global meta-analysis of studies quantifying the effects of El Niño/La Niña-warming on corals, surveying studies from both the primary literature and International Coral Reef Symposium (ICRS) Proceedings. Overall, the strongest signal for El Niño/La Niña-associated coral bleaching was long-term mean temperature; bleaching decreased with decreasing long-term mean temperature (n = 20 studies). Additionally, coral cover losses during El Niño/La Niña were shaped by localized maximum heat stress and long-term mean temperature (n = 28 studies). Second, we present a method for quantifying coral heat stress which, for any coral reef location in the world, allows extraction of remotely-sensed degree heating weeks (DHW) for any date (since 1982), quantification of the maximum DHW, and the time lag since the maximum DHW. Using this method, we show that the 2015/16 El Niño event instigated unprecedented global coral heat stress across the world's oceans. With El Niño events expected to increase in frequency and severity this century, it is imperative that we gain a clear understanding of how these thermal stress anomalies impact different coral species and coral reef regions. We therefore finish with recommendations for future coral bleaching studies that will foster improved syntheses, as well as predictive and adaptive capacity to extreme warming events.</p></div
El Niño events with the greatest heat stress.
<p>Both figures show which El Niño event caused the greatest maximum DHW for each area. Note that this figure does not demonstrate bleaching response, only maximum cumulative heat stress per El Niño event. The events are color-coded by year. The 1997/1998 El Niño event (green) was the most severe event in the Eastern Pacific around the South American coast. a) All El Niño events from 1982–2010, showing how much heterogeneity there is in the geographic distribution of the most extreme heat stress. b) All El Niño events since 1982, including the 2015–2016 El Niño event, demonstrating the coral heat stress homogenization that occurred during this most recent El Niño/La Niña warming event.</p
Definition of derived variables included in our new data product.
<p>All variables are computed for a user-provided latitude/longitude and date, which can include any time point since 1984. With the exception of the first three months of 1982, we also calculate these same parameters for 1982–1983, although the beginning of usable data is in January 1982, so calculation of maximum DHW and time lag are restricted to within this window. Data are accessible at <a href="http://www.CoralStress.org" target="_blank">www.CoralStress.org</a>.</p
Estimating the magnitude and sensitivity of energy fluxes for stickleback hosts and Schistocephalus solidus parasites using the metabolic theory of ecology
Abstract Parasites are ubiquitous, yet their effects on hosts are difficult to quantify and generalize across ecosystems. One promising metric of parasitic impact uses the metabolic theory of ecology (MTE) to calculate energy flux, an estimate of energy lost to parasites. We investigated the feasibility of using metabolic scaling rules to compare the energetic burden of parasitism among individuals. Specifically, we found substantial sensitivity of energy flux estimates to input parameters used in the MTE equation when using available data from a model host–parasite system (Gasterosteus aculeatus and Schistocephalus solidus). Using literature values, size data from parasitized wild fish, and a respirometry experiment, we estimate that a single S. solidus tapeworm may extract up to 32% of its stickleback host's baseline metabolic energy requirement, and that parasites in multiple infections may collectively extract up to 46%. The amount of energy siphoned from stickleback to tapeworms is large but did not instigate an increase in respiration rate in the current study. This emphasizes the importance of future work focusing on how parasites influence ecosystem energetics. The approach of using the MTE to calculate energy flux provides great promise as a quantitative foundation for such estimates and provides a more concrete metric of parasite impact on hosts than parasite abundance alone