10 research outputs found

    Canine substitution of a missing maxillary lateral incisor in an orthodontic re-treatment case: Long term follow up

    Get PDF
    Abstract Introduction: This case report describes the orthodontic re-treatment of a case with a severely compromised maxillary lateral incisor requiring removal and canine substitution. The treatment included creative asymmetric treatment mechanics and a careful management of anchorage. Case Presentation: Pre-treatment, post treatment and 5 years follow-up records are shown. The treatment outcomes proved to be stable at the follow-up with acceptable aesthetic and functional results. Conclusion: Through careful management of anchorage it was possible to successfully use asymmetric treatment mechanics to achieve a good functional occlusion

    Atypical brain FDG-PET patterns increase the risk of long-term cognitive and motor progression in Parkinson's disease.

    Full text link
    peer reviewed[en] INTRODUCTION: Brain hypometabolism patterns have been previously associated with cognitive decline in Parkinson's disease (PD). Our aim is to evaluate the impact of single-subject fluorodeoxyglucose (FDG)-PET brain hypometabolism on long-term cognitive and motor outcomes in PD. METHODS: Forty-nine non-demented PD patients with baseline brain FDG-PET data underwent an extensive clinical follow-up for 8 years. The ability of FDG-PET to predict long-term cognitive and motor progression was evaluated using Cox regression and mixed ANCOVA models. RESULTS: Participants were classified according to FDG-PET pattern in PD with typical (n = 26) and atypical cortical metabolism (n = 23). Patients with atypical brain hypometabolic patterns showed higher incidence of dementia (60% vs 3%; HR = 18.3), hallucinations (56% vs 7%, HR = 7.3) and faster motor decline compared to typical pattern group. CONCLUSION: This study argues for specific patterns of FDG-PET cortical hypometabolism in PD as a prognostic marker for long term cognitive and motor outcomes at single-subject level

    Molecular Survey on A, B, C and New Avian Metapneumovirus (aMPV) Subtypes in Wild Birds of Northern-Central Italy

    Get PDF
    Recent insights into the genetic and antigenic variability of avian metapneumovirus (aMPV), including the discovery of two new subtypes, have renewed interest in this virus. aMPV causes a well-known respiratory disease in poultry. Domestic species show different susceptibility to aMPV subtypes, whereas sporadic detections in wild birds have revealed links between epidemiology and migration routes. To explore the epidemiology of aMPV in wild species, a molecular survey was conducted on samples that were collected from wild birds during avian influenza surveillance activity in Italy. The samples were screened in pools by multiplex real time RT-PCR assays in order to detect and differentiate subtypes A, B, C, and those that have been newly identified. All the birds were negative, except for a mallard (Anas platyrhynchos) that was positive for aMPV subtype C (sampled in Padua, in the Veneto region, in 2018). The sequencing of partial M and full G genes placed the strain in an intermediate position between European and Chinese clusters. The absence of subtypes A and B supports the negligible role of wild birds, whereas subtype C detection follows previous serological and molecular identifications in Italy. Subtype C circulation in domestic and wild populations emphasizes the importance of molecular test development and adoption to allow the prompt detection of this likely emerging subtype

    Occurrence of Chlamydiae in Corvids in Northeast Italy

    No full text
    Chlamydiaceae occurrence has been largely evaluated in wildlife, showing that wild birds are efficient reservoirs for avian chlamydiosis. In this study, DNA extracted from cloacal swabs of 108 corvids from Northeast Italy was screened for Chlamydiaceae by 23S real-time (rt)PCR. The positive samples were characterised by specific rtPCRs for Chlamydia psittaci, Chlamydia abortus, Chlamydia gallinacea, Chlamydia avium, Chlamydia pecorum and Chlamydia suis. Cloacal shedding of Chlamydiaceae was detected in 12 out of 108 (11.1%, 5.9%–18.6% 95% CI) corvids sampled. Molecular characterisation at the species level was possible in 8/12 samples, showing C. psittaci positivity in only one sample from a hooded crow and C. abortus positivity in seven samples, two from Eurasian magpies and five from hooded crows. Genotyping of the C. psittaci-positive sample was undertaken via PCR/high-resolution melting, clustering it in group III_pigeon, corresponding to the B genotype based on former ompA analysis. For C. abortus genotyping, multilocus sequence typing was successfully performed on the two samples with high DNA load from Eurasian magpies, highlighting 100% identity with the recently reported Polish avian C. abortus genotype 1V strain 15-58d44. To confirm the intermediate characteristics between C. psittaci and C. abortus, both samples, as well as two samples from hooded crows, showed the chlamydial plasmid inherent in most C. psittaci and avian C. abortus, but not in ruminant C. abortus strains. The plasmid sequences were highly similar (≥99%) to those of the Polish avian C. abortus genotype 1V strain 15-58d44. To our knowledge, this is the first report of avian C. abortus strains in Italy, specifically genotype 1V, confirming that they are actively circulating in corvids in the Italian region tested

    Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits

    No full text
    The recovery of ancient germplasm in tomato (Solanum lycopersicon L.) has become necessary to limit the wide genetic erosion caused by the employment of modern cultivars. Among germplasm collections, long shelf-life landraces could represent an important source of biodiversity. The present study provides a first set of molecular and phenotypic data on long shelf-life (so called ‘‘da serbo’’ in southern Italy) tomato collection, mainly originated from Sicily together with some landraces from Campania and Apulia. The analysis of fruit traits showed a low intravarietal variation, while exhibiting a quite higher intervarietal variability. Overall, the cultivars have been classified in six fruit shape classes of which flattened and slightly flattened included the 54.76 % of the collection. The principal component analysis (PCA) showed a large cluster in which almost all landraces from Sicily were included. The microsatellite (SSR) analysis confirmed a low intra-varietal variation, and the very low heterozygosity (Ho) revealed a high degree of homozygosity in these landraces. In accordance with limited morphological variability, the values of microsatellite polymorphism (PIC) showed a low genetic variability among these long shelf-life tomato cultivars. Cluster analysis based on 10 polymorphic SSR was not able to distinguish landraces for their different origin, while allowed to classify similar genotypes in four groups. Three groups showed a limited genetic distance while in a fourth largest and genetic variable cluster was included genotypes more selectable for traits of agronomic interest. Overall, the phenotypic and genetic variation allowed us to classify a collection of Sicilian long shelf-life tomato landraces

    Occurrence of Chicken Infectious Anemia Virus in Industrial and Backyard Tunisian Broilers: Preliminary Results

    No full text
    Chicken infectious anemia virus (CIAV) is an economically important and widely distributed immunosuppressive agent in chickens. This study performed an epidemiological investigation on CIAV circulation in 195 Tunisian broilers, belonging to 13 lots from five industrial farms and in one rural farm. Fifteen animals were detected positive by a VP1 nested PCR. The amplicons were molecularly characterised by complete genome sequencing. All positive samples obtained in this study were from the rural farm, whereas the industrial farms sampled were negative. Nucleotide and amino acid sequence analyses showed a high degree of similarity among the sequences obtained, suggesting the circulation of a single CIAV strain in the positive lot. Phylogenetic analysis based on the CIAV VP1 nucleotide sequence and/or the complete genome showed that the sequences obtained in this study clustered with CIAV strains previously detected in Tunisia, Italy and Egypt, belonging to genogroup II. Our results highlight the need for constant CIAV surveillance in backyard chicken production

    High Frequency and Diversity of Tetracycline Resistance Genes in the Microbiota of Broiler Chickens in Tunisia

    No full text
    Tetracycline resistance is still considered one of the most abundant antibiotic resistances among pathogenic and commensal microorganisms. The aim of this study was to evaluate the prevalence of tetracycline resistance (tet) genes in broiler chickens in Tunisia, and this was done by PCR. Individual cloacal swabs from 195 broiler chickens were collected at two slaughterhouses in the governorate of Ben Arous (Grand Tunis, Tunisia). Chickens were from 7 farms and belonged to 13 lots consisting of 15 animals randomly selected. DNA was extracted and tested for 14 tet genes. All the lots examined were positive for at least 9 tet genes, with an average number of 11 tet genes per lot. Of the 195 animals tested, 194 (99%) were positive for one or more tet genes. Tet(L), tet(M) and tet(O) genes were found in 98% of the samples, followed by tet(A) in 90.2%, tet(K) in 88.7% and tet(Q) in 80%. These results confirm the antimicrobial resistance impact in the Tunisian poultry sector and suggest the urgent need to establish a robust national antimicrobial resistance monitoring plan. Furthermore, the molecular detection of antibiotic resistance genes directly in biological samples seems to be a useful means for epidemiological investigations of the spread of resistance determinants

    Dataset related to the article "Circulating microRNA-15a associates with retinal damage in patients with early stage type 2 diabetes"

    No full text
    Dataset related to the article "Circulating microRNA-15a associates with retinal damage in patients with early stage type 2 diabetes" By Elena Sangalli 1†, Elena Tagliabue1†, Lucia La Sala1, Francesco Prattichizzo1, AnnaChiara Uccellatore2, Daniela Spada1, Fabrizio Lorino1, Paola de Candia1, Silvia Lupini 2, Laura Cantone3, Chiara Favero3, Paolo Madeddu4, Valentina Bollati 3, Stefano Genovese5 and Gaia Spinetti 1* 1 IRCCS MultiMedica, Milan, Italy, 2 Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy, 3 EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy, 4 Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom, 5 Centro Cardiologico Monzino IRCCS, Milan, Italy Front. Endocrinol., 23 April 2020 | https://doi.org/10.3389/fendo.2020.00254 Abstract Circulating microRNAs are potential biomarkers of type 2 diabetes mellitus (T2DM) and related complications. Here, we investigated the association of microRNA-15a with early retinal damage in T2DM. A cohort of untreated subjects screened for intermediate/high risk of T2DM, according to a score assessment questionnaire, and then recognized to have a normal (NGT) or impaired (IGT) glucose tolerance or T2DM was studied. The thickness of the ganglion cell complex (GCC), an early marker of retinal degeneration anteceding overt retinopathy was assessed by Optical Coherence Tomography. Total and extracellular vesicles (EV)-associated microRNA-15a quantity was measured in plasma by real time PCR. MicroRNA-15a level was significantly higher in subjects with IGT and T2DM compared with NGT. MicroRNA-15a abundance was correlated to body mass index and classical diabetes biomarkers, including fasting glucose, HbA1c, insulinemia, and HOMA-IR. Moreover, GCC thickness was significantly reduced in IGT and T2DM subjects compared with NGT controls. Importantly, total microRNA-15a correlated with GCC in IGT subjects, while in T2DM subjects, EV-microRNA-15a negatively correlated with GCC, suggesting that microRNA-15a may monitor initial retinal damage. The assessment of plasma microRNA-15a may help refining risk assessment and secondary prevention in patients with preclinical T2DM
    corecore