49 research outputs found

    Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 envelope glycoprotein trimers on neutralizing antibody induction

    Get PDF
    Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb speciUcity using rational heterologous boosts

    Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes

    Get PDF
    An HIV vaccine capable of eliciting durable neutralizing antibody responses continues to be an important unmet need. Multivalent nanoparticles displaying a high density of envelope trimers may be promising immunogen forms to elicit strong and durable humoral responses to HIV, but critical particle design criteria remain to be fully defined. To this end, we developed strategies to covalently anchor a stabilized gp140 trimer, BG505 MD39, on the surfaces of synthetic liposomes to study the effects of trimer density and vesicle stability on vaccine-elicited humoral responses in mice. CryoEM imaging revealed homogeneously distributed and oriented MD39 on the surface of liposomes irrespective of particle size, lipid composition, and conjugation strategy. Immunization with covalent MD39-coupled liposomes led to increased germinal center and antigen-specific T follicular helper cell responses and significantly higher avidity serum MD39-specific IgG responses compared to immunization with soluble MD39 trimers. A priming immunization with liposomal-MD39 was important for elicitation of high avidity antibody responses, regardless of whether booster immunizations were administered with either soluble or particulate trimers. The stability of trimer anchoring to liposomes was critical for these effects, as germinal center and output antibody responses were further increased by liposome compositions incorporating sphingomyelin that exhibited high in vitro stability in the presence of serum. Together these data highlight key liposome design features for optimizing humoral immunity to lipid nanoparticle immunogens.National Institute of Allergy and Infectious Diseases (U.S.) (Award UM1AI100663)National Institutes of Health (U.S.) (Award P01-AI104715)National Institutes of Health (U.S.) (Award P01-AI048240)National Cancer Institute (U.S.) (Grant P30-CA14051

    Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice

    Get PDF
    A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens

    An Analysis of the Systemic Risks Posed by Fannie Mae and Freddie Mac and an Evaluation of the Policy Options for Reducing those Risks

    Full text link
    Fannie Mae and Freddie Mac are government-sponsored enterprises that are central players in U.S. secondary mortgage markets. Over the past decade, these institutions have amassed enormous mortgage- and non-mortgage-oriented investment portfolios that pose significant interest-rate risks to the companies and a systemic risk to the financial system. This paper describes the nature of these risks and systemic concerns and then evaluates several policy options for reducing the institutions’ investment portfolios. We conclude that limits on portfolio size (assets or liabilities) would be the most desirable approach to mitigating the systemic risk posed by Fannie Mae and Freddie Mac

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Generalized fragment picking in Rosetta: design, protocols and applications.

    Get PDF
    The Rosetta de novo structure prediction and loop modeling protocols begin with coarse grained Monte Carlo searches in which the moves are based on short fragments extracted from a database of known structures. Here we describe a new object oriented program for picking fragments that greatly extends the functionality of the previous program (nnmake) and opens the door for new approaches to structure modeling. We provide a detailed description of the code design and architecture, highlighting its modularity, and new features such as extensibility, total control over the fragment picking workflow and scoring system customization. We demonstrate that the program provides at least as good building blocks for ab-initio structure prediction as the previous program, and provide examples of the wide range of applications that are now accessible

    Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation

    No full text
    Nitric oxide (NO) produced by NO synthase (NOS) participates in diverse physiological processes such as vasodilation, neurotransmission, and the innate immune response. Mammalian NOS isoforms are homodimers composed of two domains connected by an intervening calmodulin-binding region. The N-terminal oxidase domain binds heme and tetrahydrobiopterin and the arginine substrate. The C-terminal reductase domain binds FAD and FMN and the cosubstrate NADPH. Although several high-resolution structures of individual NOS domains have been reported, a structure of a NOS holoenzyme has remained elusive. Determination of the higher-order domain architecture of NOS is essential to elucidate the molecular underpinnings of NO formation. In particular, the pathway of electron transfer from FMN to heme, and the mechanism through which calmodulin activates this electron transfer, are largely unknown. In this report, hydrogen-deuterium exchange mass spectrometry was used to map critical NOS interaction surfaces. Direct interactions between the heme domain, the FMN subdomain, and calmodulin were observed. These interaction surfaces were confirmed by kinetic studies of site-specific interface mutants. Integration of the hydrogen-deuterium exchange mass spectrometry results with computational docking resulted in models of the NOS heme and FMN subdomain bound to calmodulin. These models suggest a pathway for electron transfer from FMN to heme and a mechanism for calmodulin activation of this critical step

    The Membrane- and Soluble-Protein Helix-Helix Interactome: Similar Geometry via Different Interactions

    Get PDF
    α Helices are a basic unit of protein secondary structure and therefore the interaction between helices is crucial to understanding tertiary and higher-order folds. Comparing subtle variations in the structural and sequence motifs between membrane and soluble proteins sheds light on the different constraints faced by each environment and elucidates the complex puzzle of membrane protein folding. Here, we demonstrate that membrane and water-soluble helix pairs share a small number of similar folds with various interhelical distances. The composition of the residues that pack at the interface between corresponding motifs shows that hydrophobic residues tend to be more enriched in the water-soluble class of structures and small residues in the transmembrane class. The latter group facilitates packing via sidechain- and backbone-mediated hydrogen bonds within the low-dielectric membrane milieu. The helix-helix interactome space, with its associated sequence preferences and accompanying hydrogen-bonding patterns, should be useful for engineering, prediction, and design of protein structure

    Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies

    Get PDF
    The envelope spike of HIV-1 employs a 'glycan shield' to protect itself from antibody-mediated neutralization. Paradoxically, however, potent broadly neutralizing antibodies (bnAbs) that target this shield have been isolated. The unusually high glycan density on the gp120 subunit limits processing during biosynthesis, leaving a region of under-processed oligomannose-type structures, which is a primary target of these bnAbs. Here we investigate the contribution of individual glycosylation sites in the formation of this so-called intrinsic mannose patch. Deletion of individual sites has a limited effect on the overall size of the intrinsic mannose patch but leads to changes in the processing of neighbouring glycans. These structural changes are largely tolerated by a panel of glycan-dependent bnAbs targeting these regions, indicating a degree of plasticity in their recognition. These results support the intrinsic mannose patch as a stable target for vaccine design.</p

    Delineation of DNA and mRNA COVID-19 vaccine-induced immune responses in preclinical animal models

    No full text
    ABSTRACTNucleic acid vaccines are designed based on genetic sequences (DNA or mRNA) of a target antigen to be expressed in vivo to drive a host immune response. In response to the COVID-19 pandemic, mRNA and DNA vaccines based on the SARS-CoV-2 Spike antigen were developed. Surprisingly, head-to-head characterizations of the immune responses elicited by each vaccine type has not been performed to date. Here, we have employed a range of preclinical animal models including the hamster, guinea pig, rabbit, and mouse to compare and delineate the immune response raised by DNA, administered intradermally (ID) with electroporation (EP) and mRNA vaccines (BNT162b2 or mRNA-1273), administered intramuscularly (IM), expressing the SARS-CoV-2 WT spike antigen. The results revealed clear differences in the quality and magnitude of the immune response between the two vaccine platforms. The DNA vaccine immune response was characterized by strong T cell responses, while the mRNA vaccine elicited robust humoral responses. The results may assist in guiding the disease target each vaccine type may be best matched against and suggest mechanisms to further enhance the breadth of each platform’s immune response
    corecore