4 research outputs found
Collapse of the critical state in superconducting niobium
Giant abrupt changes in the magnetic flux distribution in niobium foils were
studied by using magneto-optical visualization, thermal and magnetic
measurements. Uniform flux jumps and sometimes almost total catastrophic
collapse of the critical state are reported. Results are discussed in terms of
thermomagnetic instability mechanism with different development scenarios.Comment: arXiv.org produced artifacts in color images (three versions were
attempts to make better images). Download clean PDF and watch video-figures
at: "http://cmp.ameslab.gov/supermaglab/video/Nb.html
Flux Dendrites of Opposite Polarity in Superconducting MgB rings observed with magneto-optical imaging
Magneto-optical imaging was used to observe flux dendrites with opposite
polarities simultaneously penetrate superconducting, ring-shaped MgB films.
By applying a perpendicular magnetic field, branching dendritic structures
nucleate at the outer edge and abruptly propagate deep into the rings. When
these structures reach close to the inner edge, where flux with opposite
polarity has penetrated the superconductor, they occasionally trigger anti-flux
dendrites. These anti-dendrites do not branch, but instead trace the triggering
dendrite in the backward direction. Two trigger mechanisms, a non-local
magnetic and a local thermal, are considered as possible explanations for this
unexpected behaviour. Increasing the applied field further, the rings are
perforated by dendrites which carry flux to the center hole. Repeated
perforations lead to a reversed field profile and new features of dendrite
activity when the applied field is subsequently reduced.Comment: 6 pages, 6 figures, accepted to Phys. Rev.
Magnetostrictive behaviour of thin superconducting disks
Flux-pinning-induced stress and strain distributions in a thin disk
superconductor in a perpendicular magnetic field is analyzed. We calculate the
body forces, solve the magneto-elastic problem and derive formulas for all
stress and strain components, including the magnetostriction . The
flux and current density profiles in the disk are assumed to follow the Bean
model. During a cycle of the applied field the maximum tensile stress is found
to occur approximately midway between the maximum field and the remanent state.
An effective relationship between this overall maximum stress and the peak
field is found.Comment: 8 pages, 6 figures, submitted to Supercond. Sci. Technol., Proceed.
of MEM03 in Kyot