17,974 research outputs found

    Spacetime structure and vacuum entanglement

    Full text link
    We study the role that both vacuum fluctuations and vacuum entanglement of a scalar field play in identifying the spacetime topology, which is not prescribed from first principles---neither in general relativity or quantum gravity. We analyze how the entanglement and observable correlations acquired between two particle detectors are sensitive to the spatial topology of spacetime. We examine the detector's time evolution to all orders in perturbation theory and then study the phenomenon of vacuum entanglement harvesting in Minkowski spacetime and two flat topologically distinct spacetimes constructed from identifications of the Minkowski space. We show that, for instance, if the spatial topology induces a preferred direction, this direction may be inferred from the dependence of correlations between the two detectors on their orientation. We therefore show that vacuum fluctuations and vacuum entanglement harvesting makes it, in principle, possible to distinguish spacetimes with identical local geometry that differ only in their topology
    • …
    corecore