59 research outputs found
Deep Causal Learning: Representation, Discovery and Inference
Causal learning has attracted much attention in recent years because
causality reveals the essential relationship between things and indicates how
the world progresses. However, there are many problems and bottlenecks in
traditional causal learning methods, such as high-dimensional unstructured
variables, combinatorial optimization problems, unknown intervention,
unobserved confounders, selection bias and estimation bias. Deep causal
learning, that is, causal learning based on deep neural networks, brings new
insights for addressing these problems. While many deep learning-based causal
discovery and causal inference methods have been proposed, there is a lack of
reviews exploring the internal mechanism of deep learning to improve causal
learning. In this article, we comprehensively review how deep learning can
contribute to causal learning by addressing conventional challenges from three
aspects: representation, discovery, and inference. We point out that deep
causal learning is important for the theoretical extension and application
expansion of causal science and is also an indispensable part of general
artificial intelligence. We conclude the article with a summary of open issues
and potential directions for future work
Development of a multivariable prediction model for severe COVID-19 disease: a population-based study from Hong Kong
Recent studies have reported numerous predictors for adverse outcomes in COVID-19 disease. However, there have been few simple clinical risk scores available for prompt risk stratification. The objective is to develop a simple risk score for predicting severe COVID-19 disease using territory-wide data based on simple clinical and laboratory variables. Consecutive patients admitted to Hong Kong’s public hospitals between 1 January and 22 August 2020 and diagnosed with COVID-19, as confirmed by RT-PCR, were included. The primary outcome was composite intensive care unit admission, need for intubation or death with follow-up until 8 September 2020. An external independent cohort from Wuhan was used for model validation. COVID-19 testing was performed in 237,493 patients and 4442 patients (median age 44.8 years old, 95% confidence interval (CI): [28.9, 60.8]); 50% males) were tested positive. Of these, 209 patients (4.8%) met the primary outcome. A risk score including the following components was derived from Cox regression: gender, age, diabetes mellitus, hypertension, atrial fibrillation, heart failure, ischemic heart disease, peripheral vascular disease, stroke, dementia, liver diseases, gastrointestinal bleeding, cancer, increases in neutrophil count, potassium, urea, creatinine, aspartate transaminase, alanine transaminase, bilirubin, D-dimer, high sensitive troponin-I, lactate dehydrogenase, activated partial thromboplastin time, prothrombin time, and C-reactive protein, as well as decreases in lymphocyte count, platelet, hematocrit, albumin, sodium, low-density lipoprotein, high-density lipoprotein, cholesterol, glucose, and base excess. The model based on test results taken on the day of admission demonstrated an excellent predictive value. Incorporation of test results on successive time points did not further improve risk prediction. The derived score system was evaluated with out-of-sample five-cross-validation (AUC: 0.86, 95% CI: 0.82–0.91) and external validation (N = 202, AUC: 0.89, 95% CI: 0.85–0.93). A simple clinical score accurately predicted severe COVID-19 disease, even without including symptoms, blood pressure or oxygen status on presentation, or chest radiograph results
Development of a multivariable prediction model for severe COVID-19 disease: a population-based study from Hong Kong
Recent studies have reported numerous predictors for adverse outcomes in COVID-19 disease. However, there have been few simple clinical risk scores available for prompt risk stratification. The objective is to develop a simple risk score for predicting severe COVID-19 disease using territory-wide data based on simple clinical and laboratory variables. Consecutive patients admitted to Hong Kong’s public hospitals between 1 January and 22 August 2020 and diagnosed with COVID-19, as confirmed by RT-PCR, were included. The primary outcome was composite intensive care unit admission, need for intubation or death with follow-up until 8 September 2020. An external independent cohort from Wuhan was used for model validation. COVID-19 testing was performed in 237,493 patients and 4442 patients (median age 44.8 years old, 95% confidence interval (CI): [28.9, 60.8]); 50% males) were tested positive. Of these, 209 patients (4.8%) met the primary outcome. A risk score including the following components was derived from Cox regression: gender, age, diabetes mellitus, hypertension, atrial fibrillation, heart failure, ischemic heart disease, peripheral vascular disease, stroke, dementia, liver diseases, gastrointestinal bleeding, cancer, increases in neutrophil count, potassium, urea, creatinine, aspartate transaminase, alanine transaminase, bilirubin, D-dimer, high sensitive troponin-I, lactate dehydrogenase, activated partial thromboplastin time, prothrombin time, and C-reactive protein, as well as decreases in lymphocyte count, platelet, hematocrit, albumin, sodium, low-density lipoprotein, high-density lipoprotein, cholesterol, glucose, and base excess. The model based on test results taken on the day of admission demonstrated an excellent predictive value. Incorporation of test results on successive time points did not further improve risk prediction. The derived score system was evaluated with out-of-sample five-cross-validation (AUC: 0.86, 95% CI: 0.82–0.91) and external validation (N = 202, AUC: 0.89, 95% CI: 0.85–0.93). A simple clinical score accurately predicted severe COVID-19 disease, even without including symptoms, blood pressure or oxygen status on presentation, or chest radiograph results
Agent facilitated real-time flexible supply chain structuring
Electronic commerce and the vast amounts of real-time information available through means of EDI and the Internet are reshaping the way enterprises conduct business. A new computational infrastructure and models are needed for a business to gain a competitive edge through effective use of this information base. In this paper, we develop a model of inter-organizational electronic commerce that explores various new choices and opportunities that the electronic marketplace offers. We explicitly address two major performance measures of supply chains—time and cost—in a unified fashion. In our work, we model different business entities as autonomous software agents interconnected via the Internet. The main research focus of our efforts is how to coordinate software agents in supply chains dynamically and flexibly such that goods and services can be delivered at the right time in a cost-effective manner.
Dynamic Supply Chain Structuring for Electronic Commerce Among Agents
Electronic commerce and the vast amounts of real-time information available through means of EDI and the Internet are reshaping the way enterprises conduct business. A new computational infrastructure and models are needed for a business to gain a competitive edge through eective use of this information base. One of the key issues in competing in the electronic marketplace is product/service dierentiation. Currently there are no computational models for multi-issue decision making in electronic commerce. We develop a model of inter-organizational electronic commerce that explores various new choices and opportunities that the electronic marketplace oers. The particular motivating applications of our work are supply chain management. Two major performance measures of supply chain activities are cost and leadtime. In our model, we explicitly address these two issues in a unied fashion for a variety of supply chain activities, such as outsourcing, supplier selection, pro..
- …